Numerical computing of isophote curves, general helices, and relatively normal-slant helices in Minkowski 3-space

被引:1
作者
Ozturk, Ufuk [1 ]
Nesovic, Emilija [2 ]
Ozturk, Esra B. Koc [3 ]
机构
[1] Cankiri Karatekin Univ, Dept Math, TR-18100 Cankiri, Turkiye
[2] Univ Kragujevac, Fac Sci, Dept Math & Informat, Kragujevac 34000, Serbia
[3] Bolu Abant Izzet Baysal Univ, Dept Math, TR-14030 Bolu, Turkiye
关键词
general helix; initial value problem; isophote curve; Minkowski; 3-space; relatively normal-slant helix; Runge-Kutta method;
D O I
10.1002/mma.8474
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a method for numerical computing of some characteristic kinds of non-null curves lying on a non-degenerate surface in Minkowski space 𝔼�13. Namely, we obtain the system of the first-order ordinary differential equations that correspond to general helix, relatively normal-slant helix, and isophote curve and integrate it under chosen initial conditions by applying the ode45 function of MATLAB and Runge-Kutta method. Depending on the kind of curve, we assume that parametric equation of the surface, an axis vector, value of the real cosine or hyperbolic cosine of the corresponding pseudo angle between axis vector and Darboux frame's vector, normal curvature, and geodesic torsion of the curve are given. Finally, we provide the related examples of numerically computed characteristic curves.
引用
收藏
页码:3428 / 3442
页数:15
相关论文
共 17 条
  • [1] Magnetic Curves in Three-Dimensional Quasi-Para-Sasakian Geometry
    Alin, C. C.
    Crasmareanu, M.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 2087 - 2097
  • [2] On isophote curves and their characterizations
    Dogan, Fatih
    Yayli, Yusuf
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2015, 39 (05) : 650 - 664
  • [3] Duggal K.L., 1996, LIGHTLIKE SUBMANIFOL, V364
  • [4] Farin G., 2014, Curves and surfaces for computer-aided geometric design: a practical guide
  • [5] The Many Faces of Amphipathic Helices
    Gimenez-Andres, Manuel
    Copic, Alenka
    Antonny, Bruno
    [J]. BIOMOLECULES, 2018, 8 (03):
  • [6] Hahmann S, 2008, MATH VIS, P1, DOI 10.1007/978-3-540-33265-7_1
  • [7] Keil MJ., 1999, J GEOMETRY GRAPHICS, V3, P67
  • [8] CORRECTION OF LOCAL SURFACE IRREGULARITIES USING REFLECTION LINES
    KLASS, R
    [J]. COMPUTER-AIDED DESIGN, 1980, 12 (02) : 73 - 77
  • [9] Relatively normal-slant helices lying on a surface and their characterizations
    Macit, Nesibe
    Duldul, Mustafa
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2017, 46 (03): : 397 - 408
  • [10] On geometric interpretation of pseudo-angle in Minkowski plane
    Nesovic, Emilija
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2017, 14 (05)