Deepfake video detection using deep learning algorithms

被引:0
|
作者
Korkmaz, Sahin [1 ]
Alkan, Mustafa [2 ]
机构
[1] Gazi Univ, Bilisim Enstitusu, Ankara, Turkey
[2] Gazi Univ, Teknol Fak, Elekt Elekt Muhendisligi Bolumu, Ankara, Turkey
来源
关键词
Neural networks; forensic science; deep learning; fake video;
D O I
10.2339/politeknik.1063104
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Deepfake videos are one of the areas that have attracted a lot of attention, especially in recent years. As a result of the increasing popularity of social networks, editing and sharing of videos and images created with advanced cameras of mobile devices has reached a more accessible level than before. Many fake images and videos created with the deepfake techniques and distributed on social networks threaten not only the private life of individuals, but also the public order. The human face always has an important role in human interaction and biometric-based verification systems. Therefore, even minor manipulations of face frames can undermine trust in security applications and digital data In this study, a classification problem solution approach is adopted in the creation of the deepfake video detection model. Pre-trained EfficientNet model family is used as feature extractor and a classifier is trained on it to get the output of the prediction. The DFCC data set, which is one of the largest deepfake datasets and produced by deep learning-based methods, was used to train the model. Deep learning algorithms and libraries have been used and a new model has been introduced that decides whether the determined video is real or fake.
引用
收藏
页码:855 / 862
页数:10
相关论文
共 50 条
  • [1] An efficient deepfake video detection using robust deep learning
    Qadir, Abdul
    Mahum, Rabbia
    El-Meligy, Mohammed A.
    Ragab, Adham E.
    AlSalman, Abdulmalik
    Awais, Muhammad
    HELIYON, 2024, 10 (05)
  • [2] On the Generalization of Deep Learning Models in Video Deepfake Detection
    Coccomini, Davide Alessandro
    Caldelli, Roberto
    Falchi, Fabrizio
    Gennaro, Claudio
    JOURNAL OF IMAGING, 2023, 9 (05)
  • [3] DeepFake Detection Using Deep Learning
    Mansoor, Nazneen
    Iliev, Alexander Iliev
    INTELLIGENT COMPUTING, VOL 3, 2024, 2024, 1018 : 202 - 213
  • [4] Hybrid Deep-Learning Model for Deepfake Detection in Video using Transfer Learning Approach
    Pandey, Raksha
    Kushwaha, Alok Kumar Singh
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2024,
  • [5] A New Deep Learning-Based Methodology for Video Deepfake Detection Using XGBoost
    Ismail, Aya
    Elpeltagy, Marwa
    S. Zaki, Mervat
    Eldahshan, Kamal
    SENSORS, 2021, 21 (16)
  • [6] Deepfake Video Detection Based on Spatial, Spectral, and Temporal Inconsistencies Using Multimodal Deep Learning
    Lewis, John K.
    Toubal, Imad Eddine
    Chen, Helen
    Sandesera, Vishal
    Lomnitz, Michael
    Hampel-Arias, Zigfried
    Prasad, Calyam
    Palaniappan, Kannappan
    2020 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR): TRUSTED COMPUTING, PRIVACY, AND SECURING MULTIMEDIA, 2020,
  • [7] AN EFFICIENT DEEP VIDEO MODEL FOR DEEPFAKE DETECTION
    Sun, Ruipeng
    Zhao, Ziyuan
    Shen, Li
    Zeng, Zeng
    Li, Yuxin
    Veeravalli, Bharadwaj
    Yang Xulei
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 351 - 355
  • [8] An Enhanced Deep Learning-Based DeepFake Video Detection and Classification System
    Awotunde, Joseph Bamidele
    Jimoh, Rasheed Gbenga
    Imoize, Agbotiname Lucky
    Abdulrazaq, Akeem Tayo
    Li, Chun-Ta
    Lee, Cheng-Chi
    ELECTRONICS, 2023, 12 (01)
  • [9] Deepfake Detection through Deep Learning
    Pan, Deng
    Sun, Lixian
    Wang, Rui
    Zhang, Xingjian
    Sinnott, Richard O.
    2020 IEEE/ACM INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING, APPLICATIONS AND TECHNOLOGIES (BDCAT 2020), 2020, : 134 - 143
  • [10] Spatiotemporal Inconsistency Learning for DeepFake Video Detection
    Gu, Zhihao
    Chen, Yang
    Yao, Taiping
    Ding, Shouhong
    Li, Jilin
    Huang, Feiyue
    Ma, Lizhuang
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 3473 - 3481