Osteochondral regenerative engineering: challenges, state-of-the-art and translational perspectives

被引:18
作者
Barui, Srimanta [1 ]
Ghosh, Debolina [1 ]
Laurencin, Cato T. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Connecticut, Connecticut Convergence Inst Translat Regenerat En, Hlth Ctr, Farmington, CT 06030 USA
[2] Univ Connecticut, Dept Orthopaed Surg, Hlth Ctr, Farmington, CT 06030 USA
[3] Univ Connecticut, Dept Chem & Biomol Engn, Storrs, CT 06269 USA
[4] Univ Connecticut, Dept Biomed Engn, Storrs, CT 06269 USA
[5] Univ Connecticut, Dept Mat Sci & Engn, Storrs, CT 06269 USA
基金
美国国家卫生研究院;
关键词
osteochondral regeneration; additive manufacturing; gradient porosity; in vivo; commercialization; MESENCHYMAL STEM-CELLS; BIODEGRADABLE HYDROGEL COMPOSITES; ON-A-CHIP; ARTICULAR-CARTILAGE; CHONDROITIN SULFATE; CURRENT STRATEGIES; TOP-STEREOLITHOGRAPHY; GRADIENT SCAFFOLDS; HYALURONIC-ACID; BONE REPAIR;
D O I
10.1093/rb/rbac109
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Despite quantum leaps, the biomimetic regeneration of cartilage and osteochondral regeneration remains a major challenge, owing to the complex and hierarchical nature of compositional, structural and functional properties. In this review, an account of the prevailing challenges in biomimicking the gradients in porous microstructure, cells and extracellular matrix (ECM) orientation is presented. Further, the spatial arrangement of the cues in inducing vascularization in the subchondral bone region while maintaining the avascular nature of the adjacent cartilage layer is highlighted. With rapid advancement in biomaterials science, biofabrication tools and strategies, the state-of-the-art in osteochondral regeneration since the last decade has expansively elaborated. This includes conventional and additive manufacturing of synthetic/natural/ECM-based biomaterials, tissue-specific/mesenchymal/progenitor cells, growth factors and/or signaling biomolecules. Beyond the laboratory-based research and development, the underlying challenges in translational research are also provided in a dedicated section. A new generation of biomaterial-based acellular scaffold systems with uncompromised biocompatibility and osteochondral regenerative capability is necessary to bridge the clinical demand and commercial supply. Encompassing the basic elements of osteochondral research, this review is believed to serve as a standalone guide for early career researchers, in expanding the research horizon to improve the quality of life of osteoarthritic patients affordably.
引用
收藏
页数:23
相关论文
共 182 条
[1]   Bioprinting of mineralized constructs utilizing multichannel plotting of a self-setting calcium phosphate cement and a cell-laden bioink [J].
Ahlfeld, Tilman ;
Doberenz, Falko ;
Kilian, David ;
Vater, Corina ;
Korn, Paula ;
Lauer, Guenter ;
Lode, Anja ;
Gelinsky, Michael .
BIOFABRICATION, 2018, 10 (04)
[2]   Osteochondral tissue engineering: Perspectives for clinical application and preclinical development [J].
Ai, Chengchong ;
Lee, Yee Han Dave ;
Tan, Xuan Hao ;
Tan, Si Heng Sharon ;
Hui, James Hoi Po ;
Goh, James Cho-Hong .
JOURNAL OF ORTHOPAEDIC TRANSLATION, 2021, 30 :93-102
[3]  
Ambrosio AMA, 2001, J BIOMED MATER RES, V58, P295, DOI 10.1002/1097-4636(2001)58:3<295::AID-JBM1020>3.3.CO
[4]  
2-#
[5]  
Andrade Renato, 2016, J Exp Orthop, V3, P31
[6]   Chondral and osteochondral operative treatment in early osteoarthritis [J].
Angele, Peter ;
Niemeyer, Philipp ;
Steinwachs, Matthias ;
Filardo, Giuseppe ;
Gomoll, Andreas H. ;
Kon, Elizaveta ;
Zellner, Johannes ;
Madry, Henning .
KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY, 2016, 24 (06) :1743-1752
[7]   Engineering of gradient osteochondral tissue: From nature to lab [J].
Ansari, Sana ;
Khorshidi, Sajedeh ;
Karkhaneh, Akbar .
ACTA BIOMATERIALIA, 2019, 87 :41-54
[8]   Phosphate graphene as an intrinsically osteoinductive scaffold for stem cell-driven bone regeneration [J].
Arnold, Anne M. ;
Holt, Brian D. ;
Daneshmandi, Leila ;
Laurencin, Cato T. ;
Sydlik, Stefanie A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (11) :4855-4860
[9]   Additive manufacturing of low-cost porous titanium-based composites for biomedical applications: Advantages, challenges and opinion for future development [J].
Attar, Hooyar ;
Ehtemam-Haghighi, Shima ;
Soro, Nicolas ;
Kent, Damon ;
Dargusch, Matthew S. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 827
[10]   Aspiration-assisted bioprinting of the osteochondral interface [J].
Ayan, Bugra ;
Wu, Yang ;
Karuppagounder, Vengadeshprabhu ;
Kamal, Fadia ;
Ozbolat, Ibrahim T. .
SCIENTIFIC REPORTS, 2020, 10 (01)