The collapse of a sonoluminescent cavitation bubble imaged with X-ray free-electron laser pulses

被引:2
|
作者
Hoeppe, Hannes P. [1 ]
Osterhoff, Markus [1 ]
Maleki, Atiyeh Aghel [2 ]
Rossello, Juan M. [2 ,3 ]
Vassholz, Malte [1 ]
Hagemann, Johannes [4 ,5 ]
Engler, Thea [4 ,5 ]
Schwarz, Daniel [5 ]
Rodriguez-Fernandez, Angel [6 ]
Boesenberg, Ulrike [6 ]
Moeller, Johannes [6 ]
Shayduk, Roman [6 ]
Hallmann, Joerg [6 ]
Madsen, Anders [6 ]
Mettin, Robert [2 ]
Salditt, Tim [1 ]
机构
[1] Georg August Univ Gottingen, Inst Rontgenphys, D-37077 Gottingen, Germany
[2] Georg August Univ Gottingen, Drittes Phys Inst, D-37077 Gottingen, Germany
[3] Univ Ljubljana, Fac Mech Engn, SVN-1000 Ljubljana, Slovenia
[4] Deutsch Elektronen Synchrotron DESY, Helmholtz Imaging Platform, D-22607 Hamburg, Germany
[5] Deutsch Elektronen Synchrotron DESY, CXNSCtr Xray & Nano Sci, D-22607 Hamburg, Germany
[6] European Xray Free Electron Laser Facil, D-22869 Schenefeld, Germany
来源
NEW JOURNAL OF PHYSICS | 2024年 / 26卷 / 03期
关键词
x-ray holography; single-bubble sonoluminescence; bubble collapse dynamics; acoustic trap; single-pulse imaging; x-ray free-electron laser; MIE SCATTERING; SINGLE; DYNAMICS; EMISSIONS;
D O I
10.1088/1367-2630/ad295b
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Single bubble sonoluminescence (SBSL) is the phenomenon of synchronous light emission due to the violent collapse of a single spherical bubble in a liquid, driven by an ultrasonic field. During the bubble collapse, matter inside the bubble reaches extreme conditions of several gigapascals and temperatures on the order of 10000 K, leading to picosecond flashes of visible light. To this day, details regarding the energy focusing mechanism rely on simulations due to the fast dynamics of the bubble collapse and spatial scales below the optical resolution limit. In this work we present phase-contrast holographic imaging with single x-ray free-electron laser (XFEL) pulses of a SBSL cavitation bubble in water. X-rays probe the electron density structure and by that provide a uniquely new view on the bubble interior and its collapse dynamics. The involved fast time-scales are accessed by sub-100 fs XFEL pulses and a custom synchronization scheme for the bubble oscillator. We find that during the whole oscillation cycle the bubble's density profile can be well described by a simple step-like structure, with the radius R following the dynamics of the Gilmore model. The quantitatively measured internal density and width of the boundary layer exhibit a large variance. Smallest reconstructed bubble sizes reach down to R similar or equal to 0.8 mu m , and are consistent with spherical symmetry. While we here achieved a spatial resolution of a few 100 nm, the visibility of the bubble and its internal structure is limited by the total x-ray phase shift which can be scaled with experimental parameters.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Coherent Diffraction Imaging Analysis of Shape-Controlled Nanoparticles with Focused Hard X-ray Free-Electron Laser Pulses
    Takahashi, Yukio
    Suzuki, Akihiro
    Zettsu, Nobuyuki
    Oroguchi, Tomotaka
    Takayama, Yuki
    Sekiguchi, Yuki
    Kobayashi, Amane
    Yamamoto, Masaki
    Nakasako, Masayoshi
    NANO LETTERS, 2013, 13 (12) : 6028 - 6032
  • [32] A phenomenological model of the X-ray pulse statistics of a high-repetition-rate X-ray free-electron laser
    Guest, Trey W.
    Bean, Richard
    Kammering, Raimund
    van Riessen, Grant
    Mancuso, Adrian P.
    Abbey, Brian
    IUCRJ, 2023, 10 : 708 - 719
  • [33] Suppression of resonant auger effect with chirped x-ray free-electron laser pulse
    Sun, Yu-Ping
    Miao, Quan
    Zhou, Ai-Ping
    Liu, Rui-Jin
    Liu, Bo
    Gel'mukhanov, Faris
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2018, 51 (03)
  • [34] Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser
    Wu, Wenting
    Nogly, Przemyslaw
    Rheinberger, Jan
    Kick, Leonhard M.
    Gati, Cornelius
    Nelson, Garrett
    Deupi, Xavier
    Standfuss, Joerg
    Schertler, Gebhard
    Panneels, Valerie
    ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2015, 71 : 856 - 860
  • [35] Parallel Broadband Femtosecond Reflection Spectroscopy at a Soft X-Ray Free-Electron Laser
    Engel, Robin Y.
    Miedema, Piter S.
    Turenne, Diego
    Vaskivskyi, Igor
    Brenner, Gunter
    Dziarzhytski, Siarhei
    Kuhlmann, Marion
    Schunck, Jan O.
    Doring, Florian
    Styervoyedov, Andriy
    Parkin, Stuart S. P.
    David, Christian
    Schussler-Langeheine, Christian
    Durr, Hermann A.
    Beye, Martin
    APPLIED SCIENCES-BASEL, 2020, 10 (19): : 1 - 8
  • [36] Growing Crystals for X-ray Free-Electron Laser Structural Studies of Biomolecules and Their Complexes
    Nanev, Christo N.
    Saridakis, Emmanuel
    Chayen, Naomi E.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (22)
  • [37] Transient absorption of warm dense matter created by an X-ray free-electron laser
    Mercadier, Laurent
    Benediktovitch, Andrei
    Krusic, Spela
    Kas, Joshua J.
    Schlappa, Justine
    Agaker, Marcus
    Carley, Robert
    Fazio, Giuseppe
    Gerasimova, Natalia
    Kim, Young Yong
    Le Guyader, Loic
    Mercurio, Giuseppe
    Parchenko, Sergii
    Rehr, John J.
    Rubensson, Jan-Erik
    Serkez, Svitozar
    Stransky, Michal
    Teichmann, Martin
    Yin, Zhong
    Zitnik, Matjaz
    Scherz, Andreas
    Ziaja, Beata
    Rohringer, Nina
    NATURE PHYSICS, 2024, 20 (10) : 1564 - 1569
  • [38] Fluid sample injectors for x-ray free electron laser at SACLA
    Tono, Kensuke
    HIGH POWER LASER SCIENCE AND ENGINEERING, 2017, 5
  • [39] Free-electron laser based resonant inelastic X-ray scattering on molecules and liquids
    Kunnus, Kristjan
    Schreck, Simon
    Foehlisch, Alexander
    JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2015, 204 : 345 - 355
  • [40] Normalized single-shot X-ray absorption spectroscopy at a free-electron laser
    Brenner, Guenter
    Dziarzhytski, Siarhei
    Miedema, Piter S.
    Roesner, Benedikt
    David, Christian
    Beye, Martin
    OPTICS LETTERS, 2019, 44 (09) : 2157 - 2160