Software Tools for 2D Cell Segmentation

被引:4
作者
Liu, Ping [1 ]
Li, Jun [1 ,2 ]
Chang, Jiaxing [1 ,2 ]
Hu, Pinli [2 ]
Sun, Yue [2 ]
Jiang, Yanan [2 ]
Zhang, Fan [2 ]
Shao, Haojing [2 ]
机构
[1] Taiyuan Univ Technol, Coll Comp Sci & Technol, Coll Data Sci, Jinzhong 030600, Peoples R China
[2] Chinese Acad Agr Sci, Agr Genom Inst Shenzhen, Shenzhen Branch, Guangdong Lab Lingnan Modern Agr,Minist Agr & Rura, 7 Pengfei Rd, Shenzhen 518120, Peoples R China
基金
中国国家自然科学基金;
关键词
cell segmentation; image processing; 2D cell; performance; IMAGE;
D O I
10.3390/cells13040352
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Cell segmentation is an important task in the field of image processing, widely used in the life sciences and medical fields. Traditional methods are mainly based on pixel intensity and spatial relationships, but have limitations. In recent years, machine learning and deep learning methods have been widely used, providing more-accurate and efficient solutions for cell segmentation. The effort to develop efficient and accurate segmentation software tools has been one of the major focal points in the field of cell segmentation for years. However, each software tool has unique characteristics and adaptations, and no universal cell-segmentation software can achieve perfect results. In this review, we used three publicly available datasets containing multiple 2D cell-imaging modalities. Common segmentation metrics were used to evaluate the performance of eight segmentation tools to compare their generality and, thus, find the best-performing tool.
引用
收藏
页数:15
相关论文
共 36 条
  • [1] Computational challenges and opportunities in spatially resolved transcriptomic data analysis
    Atta, Lyla
    Fan, Jean
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [2] Bailoni A, 2022, Arxiv, DOI arXiv:1906.11713
  • [3] DeepCell Kiosk: scaling deep learning-enabled cellular image analysis with Kubernetes
    Bannon, Dylan
    Moen, Erick
    Schwartz, Morgan
    Borba, Enrico
    Kudo, Takamasa
    Greenwald, Noah
    Vijayakumar, Vibha
    Chang, Brian
    Pao, Edward
    Osterman, Erik
    Graf, William
    Van Valen, David
    [J]. NATURE METHODS, 2021, 18 (01) : 43 - +
  • [4] ilastik: interactive machine learning for (bio) image analysis
    Berg, Stuart
    Kutra, Dominik
    Kroeger, Thorben
    Straehle, Christoph N.
    Kausler, Bernhard X.
    Haubold, Carsten
    Schiegg, Martin
    Ales, Janez
    Beier, Thorsten
    Rudy, Markus
    Eren, Kemal
    Cervantes, Jaime I.
    Xu, Buote
    Beuttenmueller, Fynn
    Wolny, Adrian
    Zhang, Chong
    Koethe, Ullrich
    Hamprecht, Fred A.
    Kreshuk, Anna
    [J]. NATURE METHODS, 2019, 16 (12) : 1226 - 1232
  • [5] A SIMPLI (Single-cell Identification from MultiPLexed Images) approach for spatially-resolved tissue phenotyping at single-cell resolution
    Bortolomeazzi, Michele
    Montorsi, Lucia
    Temelkovski, Damjan
    Keddar, Mohamed Reda
    Acha-Sagredo, Amelia
    Pitcher, Michael J.
    Basso, Gianluca
    Laghi, Luigi
    Rodriguez-Justo, Manuel
    Spencer, Jo
    Ciccarelli, Francesca D.
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [6] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [7] Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl
    Caicedo, Juan C.
    Goodman, Allen
    Karhohs, Kyle W.
    Cimini, Beth A.
    Ackerman, Jeanelle
    Haghighi, Marzieh
    Heng, CherKeng
    Becker, Tim
    Minh Doan
    McQuin, Claire
    Rohban, Mohammad
    Singh, Shantanu
    Carpenter, Anne E.
    [J]. NATURE METHODS, 2019, 16 (12) : 1247 - +
  • [8] CellProfiler: image analysis software for identifying and quantifying cell phenotypes
    Carpenter, Anne E.
    Jones, Thouis Ray
    Lamprecht, Michael R.
    Clarke, Colin
    Kang, In Han
    Friman, Ola
    Guertin, David A.
    Chang, Joo Han
    Lindquist, Robert A.
    Moffat, Jason
    Golland, Polina
    Sabatini, David M.
    [J]. GENOME BIOLOGY, 2006, 7 (10)
  • [9] Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
  • [10] Omnipose: a high-precision morphology-independent solution for bacterial cell segmentation
    Cutler, Kevin J.
    Stringer, Carsen
    Lo, Teresa W.
    Rappez, Luca
    Stroustrup, Nicholas
    Peterson, S. Brook
    Wiggins, Paul A.
    Mougous, Joseph D.
    [J]. NATURE METHODS, 2022, 19 (11) : 1438 - +