Exploiting the successive projections algorithm to improve the quantification of chemical constituents and discrimination of botanical origin of Argentinean bee-pollen

被引:5
作者
Vallese, Federico Danilo [1 ]
Paoloni, Soledad Garcia [2 ]
Springer, Valeria [1 ]
Fernandes, David Douglas de Sousa [3 ]
Diniz, Paulo Henrique Gonsalves Dias [4 ]
Pistonesi, Marcelo Fabian [1 ]
机构
[1] Univ Nacl Sur UNS, Dept Quim, INQUISUR, CONICET, Av Alem 1253, RA-8000 Bahia Blanca, Argentina
[2] Ctr Reg Buenos Aires, INTA, Estn Expt Agr H Ascasubi, Buenos Aires, Argentina
[3] Univ Estadual Paraiba, Dept Quim, CCT, BR-58429500 Campina Grande, Paraiba, Brazil
[4] Univ Fed Oeste Bahia, Programa Posgrad Quim Pura & Aplicada, BR-47810059 Barreiras, BA, Brazil
关键词
Bee -pollen producers; Chemical composition; Vibrational spectroscopy; Variable selection; Multivariate calibration; Pattern recognition; INTERVAL SELECTION; NIR SPECTROSCOPY; INFRARED-SPECTROSCOPY; ISPA-PLS; MOISTURE;
D O I
10.1016/j.jfca.2023.105925
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Bee-pollen as a functional food is gaining importance throughout the world because of its composition and biological properties. The protein content is one of the main parameters to determine its nutritional value, but it makes accurate labeling difficult due its high variability related to the botanical origin. Thus, this work employed near-infrared (NIR) spectroscopy and chemometrics to perform the quality control of Argentinean bee-pollen. Compared to full spectrum models, the successive projections algorithm (SPA) for selection of intervals or individual variables always achieved the best results for quantitative and qualitative approaches. For moisture and total protein content determinations, SPA coupled with partial least squares (iSPA-PLS) and multiple linear regression (SPA-MLR) achieved relative errors of prediction (REP) of 3.53% and 3.93%, respectively. For the pollen classifications, in terms of total protein content (as a dietary supplement with a cut-off higher than 20 g/ 100 g) and botanical origin, discriminant analysis by iSPA-PLS-DA achieved the best predictive abilities, misclassifying only one sample in the test set for both studies. The overall accuracies were 97.2% and 96.1%, respectively. Therefore, NIR spectroscopy combined with chemometrics can be used as an effective, fast, and low-cost tool for screening the quality of bee-pollen.
引用
收藏
页数:9
相关论文
共 35 条
  • [21] The successive projections algorithm for interval selection in PLS
    Gomes, Adriano de Araujo
    Harrop Galvao, Roberto Kawakami
    Ugulino de Araujo, Mario Cesar
    Veras, Germano
    da Silva, Edvan Cirino
    [J]. MICROCHEMICAL JOURNAL, 2013, 110 : 202 - 208
  • [22] Pollen and bee bread as new health-oriented products: A review
    Kieliszek, Marek
    Piwowarek, Kamil
    Kot, Anna M.
    Blazejak, Stanislaw
    Chlebowska-Smigiel, Anna
    Wolska, Iwona
    [J]. TRENDS IN FOOD SCIENCE & TECHNOLOGY, 2018, 71 : 170 - 180
  • [23] Determination of fat content in chicken hamburgers using NIR spectroscopy and the Successive Projections Algorithm for interval selection in PLS regression (iSPA-PLS)
    Krepper, Gabriela
    Romeo, Florencia
    de Sousa Fernandes, David Douglas
    Goncalves Dias Diniz, Paulo Henrique
    Ugulino de Araujo, Mario Cesar
    Susana Di Nezio, Maria
    Fabian Pistonesi, Marcelo
    Eugenia Centurion, Maria
    [J]. SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2018, 189 : 300 - 306
  • [24] Non-destructive authentication of Gourmet ground roasted coffees using NIR spectroscopy and digital images
    Lopes de Araujo, Taynna Kevla
    Nobrega, Rossana Oliveira
    de Sousa Fernandes, David Douglas
    Ugulino de Araujo, Mario Cesar
    Goncalves Dias Diniz, Paulo Henrique
    da Silva, Edvan Cirino
    [J]. FOOD CHEMISTRY, 2021, 364
  • [25] Simultaneous determination of Cu, Pb, Cd, Ni, Co and Zn in bioethanol fuel by adsorptive stripping voltammetry and multivariate linear regression
    Nascimento, Danielle S.
    Insausti, Matias
    Band, Beatriz S. F.
    Lemos, Sherlan G.
    [J]. FUEL, 2014, 137 : 172 - 178
  • [26] Classification of instant coffees based on caffeine content and roasting degree using NIR spectrometry and multivariate analysis
    Nobrega, Rossana O.
    da Silva, Suelly F.
    Fernandes, David D. S.
    Lyra, Welligton S.
    de Araujo, Taynna K. L.
    Diniz, Paulo H. G. D.
    Araujo, Mario C. U.
    [J]. MICROCHEMICAL JOURNAL, 2023, 190
  • [27] Comparison of methodologies for moisture determination on dried bee pollen samples
    Pereira de Melo, Illana Louise
    de Almeida-Muradian, Ligia Bicudo
    [J]. CIENCIA E TECNOLOGIA DE ALIMENTOS, 2011, 31 (01): : 194 - 197
  • [28] Classification of Bee Pollen and Prediction of Sensory and Colorimetric Attributes-A Sensometric Fusion Approach by e-Nose, e-Tongue and NIR
    Sipos, Laszlo
    Vegh, Rita
    Bodor, Zsanett
    Zaukuu, John-Lewis Zinia
    Hitka, Geza
    Bazar, Gyorgy
    Kovacs, Zoltan
    [J]. SENSORS, 2020, 20 (23) : 1 - 22
  • [29] Detection of fat content in peanut kernels based on chemometrics and hyperspectral imaging technology
    Sun, Jianfei
    Wang, Guangxian
    Zhang, Hui
    Xia, Lianming
    Zhao, Wenping
    Guo, Yemin
    Sun, Xia
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2020, 105
  • [30] Szczsna T., 2006, Journal of Apicultural Science, V50, P81, DOI DOI 10.1016/J.SJBS.2017.06.003