Valley quantum Hall effect meets strain: Subgap formation and large increment of the Hall conductivity

被引:3
作者
Sinner, A. [1 ]
Engel, G. [1 ]
Ernst, A. [2 ,3 ]
Stephanovich, V. A. [1 ]
机构
[1] Univ Opole, Inst Phys, PL-45052 Opole, Poland
[2] Max Planck Inst Microstruct Phys, Weinberg 2, D-06120 Halle, Germany
[3] Johannes Kepler Univ Linz, Inst Theoret Phys, Altenberger Str 69, A-4040 Linz, Austria
关键词
GRAPHENE; REALIZATION; FIELDS; MODEL;
D O I
10.1103/PhysRevB.108.235431
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider the effect of the uniaxial strain applied to a graphene monolayer with a realized quantum valley Hall state, for which we use a version of the Haldane model. In its specific point, the latter model has two spectral valleys: the gapless one and the gapped one. Using analytical and numerical arguments, we show that this state is unstable against mechanical deformations of the lattice, which influences the energy spectrum, the density of states, and the conductivity tensor. In particular, the Hall conductivity in the near-DC regime may surpass largely the known plateau value along with the simultaneous sign change. Above effects pave the way to the applied graphene strain engineering or straintronics. Namely, they can be used in quantum logical gates utilizing a controllable strain manipulation for reversing or on- and off-switching of the Hall current.
引用
收藏
页数:9
相关论文
共 43 条
[1]   Novel effects of strains in graphene and other two dimensional materials [J].
Amorim, B. ;
Cortijo, A. ;
de Juan, F. ;
Grushine, A. G. ;
Guinea, F. ;
Gutierrez-Rubio, A. ;
Ochoa, H. ;
Parente, V. ;
Roldan, R. ;
San-Jose, P. ;
Schiefele, J. ;
Sturla, M. ;
Vozmediano, M. A. H. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 617 :1-54
[2]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/NNANO.2010.132, 10.1038/nnano.2010.132]
[3]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[4]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[5]   Correlated insulator behaviour at half-filling in magic-angle graphene superlattices [J].
Cao, Yuan ;
Fatemi, Valla ;
Demir, Ahmet ;
Fang, Shiang ;
Tomarken, Spencer L. ;
Luo, Jason Y. ;
Sanchez-Yamagishi, Javier D. ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Kaxiras, Efthimios ;
Ashoori, Ray C. ;
Jarillo-Herrero, Pablo .
NATURE, 2018, 556 (7699) :80-+
[6]   Unconventional superconductivity in magic-angle graphene superlattices [J].
Cao, Yuan ;
Fatemi, Valla ;
Fang, Shiang ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Kaxiras, Efthimios ;
Jarillo-Herrero, Pablo .
NATURE, 2018, 556 (7699) :43-+
[7]   Signatures of merging Dirac points in optics and transport [J].
Carbotte, J. P. ;
Nicol, E. J. .
PHYSICAL REVIEW B, 2019, 100 (03)
[8]   Optical properties of a semi-Dirac material [J].
Carbotte, J. P. ;
Bryenton, K. R. ;
Nicol, E. J. .
PHYSICAL REVIEW B, 2019, 99 (11)
[9]   Effects of strain on electronic properties of graphene [J].
Choi, Seon-Myeong ;
Jhi, Seung-Hoon ;
Son, Young-Woo .
PHYSICAL REVIEW B, 2010, 81 (08)
[10]   Nobel Lecture: Topological quantum matter [J].
Duncan, F. ;
Haldane, M. .
REVIEWS OF MODERN PHYSICS, 2017, 89 (04)