The influence of forest tree species composition on the forest height predicted from airborne laser scanning data - A case study in Latvia

被引:1
作者
Ivanovs, Janis [1 ]
Lazdins, Andis [1 ]
Lang, Mait [2 ,3 ]
机构
[1] Latvian State Forest Res Inst Silava, Riga Str 111, LV-2169 Salaspils, Latvia
[2] Univ Tartu, Tartu Observ, Observatooriumi 1, EE-61602 Tartu, Estonia
[3] Estonian Univ Life Sci, Inst Forestry & Engn, Kreutzwaldi 5, EE-51006 Tartu, Estonia
关键词
forest inventory; airborne laser scanning; phenology; large scale forest mapping;
D O I
10.46490/BF663
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Airborne laser scanning (ALS) is used to predict different forest inventory parameters; however, the ALS point cloud properties depend on various parameters such as the type of ALS scanner employed, flight altitude and scanning angle, forest stand structure, forest tree species composition, vegetation season, etc. This study used national coverage high-resolution ALS data with minimum point density of 4 points per square meter in combination with field data from the National Forest Inventory (NFI) to build forest stand height models for forest stands dominated by 6 most common tree species in Latvian mixed forest stands, viz. Pinus sylvestris L., Betula pendula Roth, Picea abies (L.) Karst., Populus tremula L., Alnus incana (L.) Moench and Alnus glutinosa (L.) Gaertn. for the various ALS scanners employed and at different growing seasons. The selected NFI plots are divided into modelling and validation datasets in a ratio of 3 : 1. The results show that for a universal forest stand height model, the RMSE value is 1.91 m and the MAE is 1.41 m. For the forest stand height models, which are stratified by scanner, individual tree species and seasons, the RMSE value is within the limits of 1.4 m for forest stands dominated by Scots pine in leaf-on canopy condition to 3.8 m for birch in leaf-off canopy condition.
引用
收藏
页码:2 / 11
页数:10
相关论文
共 22 条
[1]   Evaluating Variable Selection and Machine Learning Algorithms for Estimating Forest Heights by Combining Lidar and Hyperspectral Data [J].
Arjasakusuma, Sanjiwana ;
Swahyu Kusuma, Sandiaga ;
Phinn, Stuart .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (09)
[2]   Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric [J].
Asner, Gregory P. ;
Mascaro, Joseph .
REMOTE SENSING OF ENVIRONMENT, 2014, 140 :614-624
[3]   Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data [J].
Garcia, Mariano ;
Riano, David ;
Chuvieco, Emilio ;
Danson, F. Mark .
REMOTE SENSING OF ENVIRONMENT, 2010, 114 (04) :816-830
[4]   Large scale mapping of forest attributes using heterogeneous sets of airborne laser scanning and National Forest Inventory data [J].
Hauglin, Marius ;
Rahlf, Johannes ;
Schumacher, Johannes ;
Astrup, Rasmus ;
Breidenbach, Johannes .
FOREST ECOSYSTEMS, 2021, 8 (01)
[5]   Operational wide-area stem volume estimation based on airborne laser scanning and national forest inventory data [J].
Hollaus, M. ;
Dorigo, W. ;
Wagner, W. ;
Schadauer, K. ;
Hoefle, B. ;
Maier, B. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2009, 30 (19) :5159-5175
[6]  
Jansons J, 2010, NATIONAL FOREST INVENTORIES: PATHWAYS FOR COMMON REPORTING, P341, DOI 10.1007/978-90-481-3233-1_21
[7]  
KOREC, 2023, Trimble<(R)> GPS Pathfinder<(R)> Office software package
[8]   ESTIMATION OF DOMINANT TREE HEIGHT IN FOREST STANDS USING LIDAR DATA [J].
Lazdins, Andis ;
Ivanovs, Janis ;
Melniks, Raitis .
18TH INTERNATIONAL SCIENTIFIC CONFERENCE ENGINEERING FOR RURAL DEVELOPMENT, 2019, :1667-1672
[9]   Derivations of stand heights from airborne laser scanner data with canopy-based quantile estimators [J].
Magnussen, S ;
Boudewyn, P .
CANADIAN JOURNAL OF FOREST RESEARCH, 1998, 28 (07) :1016-1031
[10]  
Maltamo M, 2006, CAN J FOREST RES, V36, P426, DOI [10.1139/x05-246, 10.1139/X05-246]