Classical relativistic electron-field dynamics: Hamiltonian approach to radiation reaction

被引:2
作者
Alvarez-Estrada, R. F. [1 ]
Pastor, I [2 ]
Roso, L. [3 ]
Castejon, F. [2 ]
机构
[1] Univ Complutense, Fac Ciencias Fis, Dept Fis Teor, Madrid 28040, Spain
[2] CIEMAT, Lab Nacl Fus, Ave Complutense 40, Madrid 28040, Spain
[3] Univ Salamanca, Fac Ciencias, Dept Fis Aplicada, Salamanca 37008, Spain
来源
JOURNAL OF PHYSICS COMMUNICATIONS | 2023年 / 7卷 / 12期
关键词
ultra intense lasers; classical relativistic electron-field dynamics; Hamiltonian approach; radiation reaction effects; SCATTERING; INTENSITY; BEAMS;
D O I
10.1088/2399-6528/ad1049
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Motivated by the renewed interest due to the presently available extreme light sources, the dynamics of a single classical relativistic (spinless) extended electron interacting with a classical electromagnetic field (an incoming radiation and the field radiated by the electron) is revisited. The field is treated in Lorentz gauge, with the Lorentz condition. By assumption, there is a crucial finite cut-off k max on the magnitude of any wavevector contributing to the field (preventing a point electron) and, for a simple formulation, the initial conditions for particle and fields are given in the infinitely remote past. In an infinite three-dimensional vacuum and in an inertial system, Hamilton's dynamical equations for the particle and the complex field amplitudes acting as canonical variables (a's) yield an exact Lorentz force equation for the former, that includes the incoming radiation and an exact radiation reaction force F RR due to the field radiated by the electron. Uniform motion is obtained as a test of consistency. Based upon numerical computations, some approximations on F RR are given. A covariant formulation is also presented.
引用
收藏
页数:17
相关论文
共 44 条
[1]  
Alvarez-Estrada R. F., 1981, Anales de Fisica, Serie A (Fenomenos e Interacciones), V77, P110
[2]  
[Anonymous], 2007, Classical Charged Particles
[3]  
Barut A. O., 1980, Electrodynamics and Classical Theory of Fields & Particles
[4]   Quantum Radiation Reaction in Laser-Electron-Beam Collisions [J].
Blackburn, T. G. ;
Ridgers, C. P. ;
Kirk, J. G. ;
Bell, A. R. .
PHYSICAL REVIEW LETTERS, 2014, 112 (01)
[5]  
Brau C. A., 2004, MODERN PROBLEMS CLAS
[6]   Technology development for ultraintense all-OPCPA systems [J].
Bromage, J. ;
Bahk, S. -W. ;
Begishev, I. A. ;
Dorrer, C. ;
Guardalben, M. J. ;
Hoffman, B. N. ;
Oliver, J. B. ;
Roides, R. G. ;
Schiesser, E. M. ;
Shoup, M. J., III ;
Webb, Spilatro B. ;
Weiner, D. ;
Zuegel, J. D. .
HIGH POWER LASER SCIENCE AND ENGINEERING, 2019, 7
[7]   Optoelectronic properties analysis of silicon light-emitting diode monolithically integrated in standard CMOS IC [J].
Chen, Yanxu ;
Xu, Dongliang ;
Xu, Kaikai ;
Zhang, Ning ;
Liu, Siyang ;
Zhao, Jianming ;
Luo, Qian ;
Snyman, Lukas W. ;
Swart, Jacobus W. .
CHINESE PHYSICS B, 2019, 28 (10)
[8]   Investigation of classical radiation reaction with aligned crystals [J].
Di Piazza, A. ;
Wistisen, Tobias N. ;
Uggerhoj, Ulrik I. .
PHYSICS LETTERS B, 2017, 765 :1-5
[9]   Advances in QED with intense background fields [J].
Fedotov, A. ;
Ilderton, A. ;
Karbstein, F. ;
King, B. ;
Seipt, D. ;
Taya, H. ;
Torgrimsson, G. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2023, 1010 :1-138
[10]   RELATIVISTIC FORM OF RADIATION REACTION [J].
FORD, GW ;
OCONNELL, RF .
PHYSICS LETTERS A, 1993, 174 (03) :182-184