The Segment Anything Model (SAM) for remote sensing applications: From zero to one shot

被引:97
作者
Osco, Lucas Prado [1 ]
Wu, Qiusheng [2 ]
de Lemos, Eduardo Lopes [3 ]
Gonsalves, Wesley Nunes [3 ]
Ramos, Ana Paula Marques [4 ]
Li, Jonathan [5 ]
Marcato, Jose [3 ]
机构
[1] Univ Western Sao Paulo UNOESTE, Rod Raposo Tavares km 572 Limoeiro, BR-19067175 Presidente Prudente, Brazil
[2] Univ Tennessee UT, Med Ctr Knoxville, 1331 Circle Pk Dr, Knoxville, TN 37996 USA
[3] Fed Univ Mato Grosso Sul UFMS, Ave Costa & Silva-Pioneiros, Cidade Univ, BR-79070900 Campo Grande, Brazil
[4] Sao Paulo State Univ UNESP, Ctr Educ, R Roberto Simonsen, 305, BR-19060900 Presidente Prudente, Brazil
[5] Univ Waterloo UW, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
关键词
Artificial intelligence; Image segmentation; Multi-scale datasets; Text-prompt technique;
D O I
10.1016/j.jag.2023.103540
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Segmentation is an essential step for remote sensing image processing. This study aims to advance the application of the Segment Anything Model (SAM), an innovative image segmentation model by Meta AI, in the field of remote sensing image analysis. SAM is known for its exceptional generalization capabilities and zero-shot learning, making it a promising approach to processing aerial and orbital images from diverse geographical contexts. Our exploration involved testing SAM across multi-scale datasets using various input prompts, such as bounding boxes, individual points, and text descriptors. To enhance the model's performance, we implemented a novel automated technique that combines a text-prompt-derived general example with one-shot training. This adjustment resulted in an improvement in accuracy, underscoring SAM's potential for deployment in remote sensing imagery and reducing the need for manual annotation. Despite the limitations, encountered with lower spatial resolution images, SAM exhibits promising adaptability to remote sensing data analysis. We recommend future research to enhance the model's proficiency through integration with supplementary fine-tuning techniques and other networks. Furthermore, we provide the open-source code of our modifications on online repositories, encouraging further and broader adaptations of SAM to the remote sensing domain.
引用
收藏
页数:18
相关论文
共 67 条
  • [1] Achiam J., 2023, Gpt-4 technical report
  • [2] Deep learning-based semantic segmentation of urban-scale 3D meshes in remote sensing: A survey
    Adam, Jibril Muhammad
    Liu, Weiquan
    Yu, Zang
    Afzal, Muhammad Kamran
    Bello, Saifullahi Aminu
    Muhammad, Abdullahi Uwaisu
    Wang, Cheng
    Li, Jonathan
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 121
  • [3] Alayrac Jean-Baptiste, 2022, Flamingo: a visual language model for few-shot learning
  • [4] Transformers in Remote Sensing: A Survey
    Aleissaee, Abdulaziz Amer
    Kumar, Amandeep
    Anwer, Rao Muhammad
    Khan, Salman
    Cholakkal, Hisham
    Xia, Gui-Song
    Khan, Fahad Shahbaz
    [J]. REMOTE SENSING, 2023, 15 (07)
  • [5] Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review
    Amani, Meisam
    Ghorbanian, Arsalan
    Ahmadi, Seyed Ali
    Kakooei, Mohammad
    Moghimi, Armin
    Mirmazloumi, S. Mohammad
    Moghaddam, Sayyed Hamed Alizadeh
    Mahdavi, Sahel
    Ghahremanloo, Masoud
    Parsian, Saeid
    Wu, Qiusheng
    Brisco, Brian
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 (13) : 5326 - 5350
  • [6] Deep learning in different remote sensing image categories and applications: status and prospects
    Bai, Yu
    Zhao, Yu
    Shao, Yajing
    Zhang, Xinrong
    Yuan, Xuefeng
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (05) : 1800 - 1847
  • [7] Unsupervised Domain Adaptation Using Generative Adversarial Networks for Semantic Segmentation of Aerial Images
    Benjdira, Bilel
    Bazi, Yakoub
    Koubaa, Anis
    Ouni, Kais
    [J]. REMOTE SENSING, 2019, 11 (11)
  • [8] Boguszewski A., 2020, arXiv
  • [9] Semantic segmentation with labeling uncertainty and class imbalance applied to vegetation mapping
    Bressan, Patrik Ola
    Marcato Junior, Jose
    Martins, Jose Augusto Correa
    de Melo, Maximilian Jaderson
    Goncalves, Diogo Nunes
    Freitas, Daniel Matte
    Ramos, Ana Paula Marques
    Furuya, Michelle Tais Gracia
    Osco, Lucas Prado
    Silva, Jonathan de Andrare
    Luo, Zhipeng
    Garcia, Raymundo Dordero
    Ma, Lingfei
    Li, Jonathan
    Goncalves, Wesley Nunes
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 108
  • [10] Big Data for Remote Sensing: Challenges and Opportunities
    Chi, Mingmin
    Plaza, Antonio
    Benediktsson, Jon Atli
    Sun, Zhongyi
    Shen, Jinsheng
    Zhu, Yangyong
    [J]. PROCEEDINGS OF THE IEEE, 2016, 104 (11) : 2207 - 2219