Machine learning-inspired battery material innovation

被引:21
作者
Ng, Man-Fai [1 ]
Sun, Yongming [2 ]
Seh, Zhi Wei [3 ]
机构
[1] ASTAR, Inst High Performance Comp IHPC, 1 Fusionopolis Way,16-16 Connexis, Singapore 138632, Singapore
[2] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[3] ASTAR, Inst Mat Res & Engn IMRE, 2 Fusionopolis Way,Innovis 08-03, Singapore 138634, Singapore
来源
ENERGY ADVANCES | 2023年 / 2卷 / 04期
关键词
PHASE-SEPARATION; MATERIALS DESIGN; INVERSE DESIGN; ELECTROLYTES; SUPPRESSION; POTENTIALS; MECHANISMS;
D O I
10.1039/d3ya00040k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Machine learning (ML) techniques have been a powerful tool responsible for many new discoveries in materials science in recent years. In the field of energy storage materials, particularly battery materials, ML techniques have been widely utilized to predict and discover materials' properties. In this review, we first discuss the key properties of the most common electrode and electrolyte materials. We then summarize recent progress in battery material advancement using ML techniques, through the three main strategies of direct property predictions, machine learning potentials, and inverse design. The major challenges, advantages and limitations of these techniques are also discussed. Finally, we conclude this review with a perspective on sustainable battery development using ML. Data-driven machine learning is a proven technique for battery material discovery and enables the development of sustainable next-generation batteries.
引用
收藏
页码:449 / 464
页数:16
相关论文
共 126 条
[1]   How Comparable Are Sodium-Ion Batteries to Lithium-Ion Counterparts? [J].
Abraham, K. M. .
ACS ENERGY LETTERS, 2020, 5 (11) :3544-3547
[2]   Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Suppression of Dendrite Formation in Lithium Metal Anodes [J].
Ahmad, Zeeshan ;
Xie, Tian ;
Maheshwari, Chinmay ;
Grossman, Jeffrey C. ;
Viswanathan, Venkatasubramanian .
ACS CENTRAL SCIENCE, 2018, 4 (08) :996-1006
[3]   Application of DFT-based machine learning for developing molecular electrode materials in Li-ion batteries [J].
Allam, Omar ;
Cho, Byung Woo ;
Kim, Ki Chul ;
Jang, Seung Soon .
RSC ADVANCES, 2018, 8 (69) :39414-39420
[4]   Reducing carbon dioxide emissions beyond 2030: Time to shift US power-sector focus [J].
Anderson, Jeffrey ;
Rode, David ;
Zhai, Haibo ;
Fischbeck, Paul .
ENERGY POLICY, 2021, 148
[5]   Lithium-ion batteries - Current state of the art and anticipated developments [J].
Armand, Michel ;
Axmann, Peter ;
Bresser, Dominic ;
Copley, Mark ;
Edstrom, Kristina ;
Ekberg, Christian ;
Guyomard, Dominique ;
Lestriez, Bernard ;
Novak, Petr ;
Petranikova, Martina ;
Porcher, Willy ;
Trabesinger, Sigita ;
Wohlfahrt-Mehrens, Margret ;
Zhang, Heng .
JOURNAL OF POWER SOURCES, 2020, 479
[6]   Constructing first-principles phase diagrams of amorphous LixSi using machine-learning-assisted sampling with an evolutionary algorithm [J].
Artrith, Nongnuch ;
Urban, Alexander ;
Ceder, Gerbrand .
JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (24)
[7]   Machine learning for continuous innovation in battery technologies [J].
Aykol, Muratahan ;
Herring, Patrick ;
Anapolsky, Abraham .
NATURE REVIEWS MATERIALS, 2020, 5 (10) :725-727
[8]   Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction [J].
Bachman, John Christopher ;
Muy, Sokseiha ;
Grimaud, Alexis ;
Chang, Hao-Hsun ;
Pour, Nir ;
Lux, Simon F. ;
Paschos, Odysseas ;
Maglia, Filippo ;
Lupart, Saskia ;
Lamp, Peter ;
Giordano, Livia ;
Shao-Horn, Yang .
CHEMICAL REVIEWS, 2016, 116 (01) :140-162
[9]   Suppression of Phase Separation in LiFePO4 Nanoparticles During Battery Discharge [J].
Bai, Peng ;
Cogswell, Daniel A. ;
Bazant, Martin Z. .
NANO LETTERS, 2011, 11 (11) :4890-4896
[10]   Gaussian approximation potentials: A brief tutorial introduction [J].
Bartok, Albert P. ;
Csanyi, Gabor .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (16) :1051-1057