Atomic coordination environment engineering of bimetallic alloy nanostructures for efficient ammonia electrosynthesis from nitrate

被引:122
作者
Wang, Yunhao [1 ]
Sun, Mingzi [2 ]
Zhou, Jingwen [1 ,3 ]
Xiong, Yuecheng [1 ,3 ]
Zhang, Qinghua [4 ]
Ye, Chenliang [1 ,5 ]
Wang, Xixi [1 ]
Lu, Pengyi [1 ,3 ]
Feng, Tianyi [1 ]
Hao, Fengkun [1 ]
Liu, Fu [1 ]
Wang, Juan [1 ]
Ma, Yangbo [1 ]
Yin, Jinwen [1 ]
Chu, Shengqi [6 ]
Gu, Lin [7 ,8 ]
Huang, Bolong [2 ]
Fan, Zhanxi [1 ,3 ,9 ]
机构
[1] City Univ Hong Kong, Dept Chem, Hong Kong 999077, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Biol & Chem Technol, Hung Hom, Kowloon, Hong Kong 999077, Peoples R China
[3] City Univ Hong Kong, Natl Precious Met Mat Engn Res Ctr, Hong Kong Branch, Hong Kong 999077, Peoples R China
[4] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 100190, Peoples R China
[5] Shenzhen Univ, Coll Mat Sci & Engn, Shenzhen 518060, Peoples R China
[6] Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China
[7] Tsinghua Univ, Beijing Natl Ctr Elect Microscopy, Dept Mat Sci & Engn, Beijing 100084, Peoples R China
[8] Tsinghua Univ, Lab Adv Mat, Beijing 100084, Peoples R China
[9] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Ultrathin metal nanostructures; atomic coordination environment; electrochemical nitrate; reduction reaction; ammonia synthesis; nitrogen cycle; REDUCTION; CATALYSTS;
D O I
10.1073/pnas.2306461120
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electrochemical nitrate reduction reaction (NO3RR) to ammonia has been regarded as a promising strategy to balance the global nitrogen cycle. However, it still suffers from poor Faradaic efficiency (FE) and limited yield rate for ammonia production on heterogeneous electrocatalysts, especially in neutral solutions. Herein, we report one pot synthesis of ultrathin nanosheet-assembled RuFe nanoflowers with low-coordinated Ru sites to enhance NO3RR performances in neutral electrolyte. Significantly, RuFe nanoflowers exhibit outstanding ammonia FE of 92.9% and yield rate of 38.68 mg h(-1) mgcat-1(64.47 mg h(-1) mgRu(-1)) at -0.30 and -0.65 V (vs. reversible hydrogen electrode), respectively. Experimental studies and theoretical calculations reveal that RuFe nano flowers with low-coordinated Ru sites are highly electroactive with an increased d band center to guarantee efficient electron transfer, leading to low energy barriers of nitrate reduction. The demonstration of rechargeable zinc-nitrate batteries with large-specific capacity using RuFe nanoflowers indicates their great potential in next-generation electrochemical energy systems.
引用
收藏
页数:10
相关论文
共 71 条
[21]   A Spectroscopically Observed Iron Nitrosyl Intermediate in the Reduction of Nitrate by a Surface-Conjugated Electrocatalyst [J].
Ghosh, Moumita ;
Braley, Sarah E. ;
Ezhov, Roman ;
Worster, Harrison ;
Valdez-Moreira, Juan A. ;
Losovyj, Yaroslav ;
Jakubikova, Elena ;
Pushkar, Yulia N. ;
Smith, Jeremy M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (39) :17824-17831
[22]   Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO2 nanoarrays for ammonia production and energy supply with zinc-nitrate batteries [J].
Guo, Ying ;
Zhang, Rong ;
Zhang, Shaoce ;
Zhao, Yuwei ;
Yang, Qi ;
Huang, Zhaodong ;
Dong, Binbin ;
Zhi, Chunyi .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (07) :3938-3944
[23]   Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia [J].
He, Wenhui ;
Zhang, Jian ;
Dieckhoefer, Stefan ;
Varhade, Swapnil ;
Brix, Ann Cathrin ;
Lielpetere, Anna ;
Seisel, Sabine ;
Junqueira, Joao R. C. ;
Schuhmann, Wolfgang .
NATURE COMMUNICATIONS, 2022, 13 (01)
[24]   Crystalline Modulation Engineering of Ru Nanoclusters for Boosting Ammonia Electrosynthesis from Dinitrogen or Nitrate [J].
Jiang, Minghang ;
Tao, Anyang ;
Hu, Yi ;
Wang, Lei ;
Zhang, Kaiqiang ;
Song, Xinmei ;
Yan, Wen ;
Tie, Zuoxiu ;
Jin, Zhong .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (15) :17470-17478
[25]   Molecular electrocatalysts for rapid and selective reduction of nitrogenous waste to ammonia [J].
Jiang, Zhan ;
Wang, Yamin ;
Lin, Zhicao ;
Yuan, Yubo ;
Zhang, Xiao ;
Tang, Yirong ;
Wang, Hongxuan ;
Li, Huan ;
Jin, Chuyao ;
Liang, Yongye .
ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (05) :2239-2246
[26]   Efficient Nitrate Conversion to Ammonia on f-Block Single-Atom/Metal Oxide Heterostructure via Local Electron-Deficiency Modulation [J].
Kumar, Ashwani ;
Lee, Jinsun ;
Kim, Min Gyu ;
Debnath, Bharati ;
Liu, Xinghui ;
Hwang, Yosep ;
Wang, Yue ;
Shao, Xiaodong ;
Jadhav, Amol R. ;
Liu, Yang ;
Tuysuz, Harun ;
Lee, Hyoyoung .
ACS NANO, 2022, 16 (09) :15297-15309
[27]   Atomically dispersed Fe atoms anchored on S and N-codoped carbon for efficient electrochemical denitrification [J].
Li, Jiacheng ;
Li, Miao ;
An, Ning ;
Zhang, Shuo ;
Song, Qinan ;
Yang, Yilin ;
Liu, Xiang .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (33)
[28]   Efficient Ammonia Electrosynthesis from Nitrate on Strained Ruthenium Nanoclusters [J].
Li, Jie ;
Zhan, Guangming ;
Yang, Jianhua ;
Quan, Fengjiao ;
Mao, Chengliang ;
Liu, Yang ;
Wang, Bo ;
Lei, Fengcai ;
Li, Lejing ;
Chan, Alice W. M. ;
Xu, Liangpang ;
Shi, Yanbiao ;
Du, Yi ;
Hao, Weichang ;
Wong, Po Keung ;
Wang, Jianfang ;
Dou, Shi-Xue ;
Zhang, Lizhi ;
Yu, Jimmy C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (15) :7036-7046
[29]   Surface and lattice engineered ruthenium superstructures towards high-performance bifunctional hydrogen catalysis [J].
Li, Leigang ;
Liu, Shangheng ;
Zhan, Changhong ;
Wen, Yan ;
Sun, Zhefei ;
Han, Jiajia ;
Chan, Ting-Shan ;
Zhang, Qiaobao ;
Hu, Zhiwei ;
Huang, Xiaoqing .
ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (01) :157-166
[30]   Compensating Electronic Effect Enables Fast Site-to-Site Electron Transfer over Ultrathin RuMn Nanosheet Branches toward Highly Electroactive and Stable Water Splitting [J].
Li, Leigang ;
Bu, Lingzheng ;
Huang, Bolong ;
Wang, Pengtang ;
Shen, Chenqi ;
Bai, Shuxing ;
Chan, Ting-Shan ;
Shao, Qi ;
Hu, Zhiwei ;
Huang, Xiaoqing .
ADVANCED MATERIALS, 2021, 33 (51)