A flexible quasi-likelihood model for microbiome abundance count data

被引:2
作者
Shi, Yiming [1 ]
Li, Huilin [2 ]
Wang, Chan [2 ]
Chen, Jun [3 ]
Jiang, Hongmei [4 ]
Shih, Ya-Chen T. [5 ]
Zhang, Haixiang [6 ]
Song, Yizhe [7 ]
Feng, Yang [8 ]
Liu, Lei [1 ]
机构
[1] Washington Univ St Louis, Div Biostat, St Louis, MO 63130 USA
[2] NYU, Sch Med, Dept Populat Hlth, Div Biostat, New York, NY USA
[3] Mayo Clinic, Div Computat Biol, Rochester, MN USA
[4] Northwestern Univ, Dept Stat, Evanston, IL USA
[5] Univ Texas MD Anderson Canc Ctr, Dept Hlth Serv Res, Houston, TX USA
[6] Tianjin Univ, Ctr Appl Math, Tianjin, Peoples R China
[7] Washington Univ St Louis, Div Biol & Biomed Sci, St. Louis, MO USA
[8] NYU, Coll Global Publ Hlth, Dept Biostat, New York, NY USA
关键词
heteroscedasticity; skewness; spline; zero-inflation; REGRESSION; OBESITY;
D O I
10.1002/sim.9880
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, we present a flexible model for microbiome count data. We consider a quasi-likelihood framework, in which we do not make any assumptions on the distribution of the microbiome count except that its variance is an unknown but smooth function of the mean. By comparing our model to the negative binomial generalized linear model (GLM) and Poisson GLM in simulation studies, we show that our flexible quasi-likelihood method yields valid inferential results. Using a real microbiome study, we demonstrate the utility of our method by examining the relationship between adenomas and microbiota. We also provide an R package "fql" for the application of our method.
引用
收藏
页码:4632 / 4643
页数:12
相关论文
共 50 条
[31]   Robust Differential Abundance Analysis of Microbiome Sequencing Data [J].
Li, Guanxun ;
Yang, Lu ;
Chen, Jun ;
Zhang, Xianyang .
GENES, 2023, 14 (11)
[32]   An alternative derivation of weak convergence concerning quasi-likelihood estimation with a small-sample correction for simultaneous testing [J].
Li, Bo .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (04) :862-890
[33]   Bayesian multivariate spatio-temporal model for quasi-sparse count data [J].
Kang, Hyunju ;
Lee, Kyoungjae .
KOREAN JOURNAL OF APPLIED STATISTICS, 2025, 38 (01)
[34]   A Flexible Multivariate Distribution for Correlated Count Data [J].
Sellers, Kimberly F. ;
Li, Tong ;
Wu, Yixuan ;
Balakrishnan, Narayanaswamy .
STATS, 2021, 4 (02) :308-326
[35]   A Flexible Adaptive Lasso Cox Frailty Model Based on the Full Likelihood [J].
Hohberg, Maike ;
Groll, Andreas .
BIOMETRICAL JOURNAL, 2024, 66 (07)
[36]   Negative binomial mixed models for analyzing microbiome count data [J].
Zhang, Xinyan ;
Mallick, Himel ;
Tang, Zaixiang ;
Zhang, Lei ;
Cui, Xiangqin ;
Benson, Andrew K. ;
Yi, Nengjun .
BMC BIOINFORMATICS, 2017, 18
[37]   An alternative quasi likelihood approach, Bayesian analysis and data-based inference for model specification [J].
Kim, Jae-Young .
JOURNAL OF ECONOMETRICS, 2014, 178 :132-145
[38]   Bayesian inference on quasi-sparse count data [J].
Datta, Jyotishka ;
Dunson, David B. .
BIOMETRIKA, 2016, 103 (04) :971-983
[39]   Maximum likelihood estimation of Gaussian copula models for geostatistical count data [J].
Han, Zifei ;
De Oliveira, Victor .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2020, 49 (08) :1957-1981
[40]   Infants' gut microbiome data: A Bayesian Marginal Zero-inflated Negative Binomial regression model for multivariate analyses of count data [J].
Hajihosseini, Morteza ;
Amini, Payam ;
Saidi-Mehrabad, Alireza ;
Dinu, Irina .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 :1621-1629