A flexible quasi-likelihood model for microbiome abundance count data

被引:2
|
作者
Shi, Yiming [1 ]
Li, Huilin [2 ]
Wang, Chan [2 ]
Chen, Jun [3 ]
Jiang, Hongmei [4 ]
Shih, Ya-Chen T. [5 ]
Zhang, Haixiang [6 ]
Song, Yizhe [7 ]
Feng, Yang [8 ]
Liu, Lei [1 ]
机构
[1] Washington Univ St Louis, Div Biostat, St Louis, MO 63130 USA
[2] NYU, Sch Med, Dept Populat Hlth, Div Biostat, New York, NY USA
[3] Mayo Clinic, Div Computat Biol, Rochester, MN USA
[4] Northwestern Univ, Dept Stat, Evanston, IL USA
[5] Univ Texas MD Anderson Canc Ctr, Dept Hlth Serv Res, Houston, TX USA
[6] Tianjin Univ, Ctr Appl Math, Tianjin, Peoples R China
[7] Washington Univ St Louis, Div Biol & Biomed Sci, St. Louis, MO USA
[8] NYU, Coll Global Publ Hlth, Dept Biostat, New York, NY USA
关键词
heteroscedasticity; skewness; spline; zero-inflation; REGRESSION; OBESITY;
D O I
10.1002/sim.9880
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, we present a flexible model for microbiome count data. We consider a quasi-likelihood framework, in which we do not make any assumptions on the distribution of the microbiome count except that its variance is an unknown but smooth function of the mean. By comparing our model to the negative binomial generalized linear model (GLM) and Poisson GLM in simulation studies, we show that our flexible quasi-likelihood method yields valid inferential results. Using a real microbiome study, we demonstrate the utility of our method by examining the relationship between adenomas and microbiota. We also provide an R package "fql" for the application of our method.
引用
收藏
页码:4632 / 4643
页数:12
相关论文
共 50 条
  • [1] Quasi-Likelihood for Right-Censored Data in the Generalized Linear Model
    Yu, Lili
    Yu, Ruifeng
    Liu, Liang
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2009, 38 (13) : 2187 - 2200
  • [2] Semiparametric quasi-likelihood estimation with missing data
    Bravo, Francesco
    Jacho-Chavez, David T.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (05) : 1345 - 1369
  • [3] Quasi-likelihood estimation of the single index conditional variance model
    Zhang, Hongfan
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 128 : 58 - 72
  • [4] Information Ratio Test for Model Misspecification in Quasi-Likelihood Inference
    Zhou, Qian M.
    Song, Peter X. -K.
    Thompson, Mary E.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (497) : 205 - 213
  • [5] A block bootstrap for quasi-likelihood in sparse functional data
    Guo, Guangbao
    STATISTICS, 2020, 54 (05) : 909 - 925
  • [6] Diagnostics for quasi-likelihood nonlinear models
    Xia, Tian
    Jiang, Xuejun
    Wang, Xueren
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (18) : 8836 - 8851
  • [7] Boosting local quasi-likelihood estimators
    Ueki, Masao
    Fueda, Kaoru
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2010, 62 (02) : 235 - 248
  • [8] Simplified methods for variance estimation in microbiome abundance count data analysis
    Shi, Yiming
    Liu, Lili
    Chen, Jun
    Wylie, Kristine M.
    Wylie, Todd N.
    Stout, Molly J.
    Wang, Chan
    Zhang, Haixiang
    Shih, Ya-Chen T.
    Xu, Xiaoyi
    Zhang, Ai
    Park, Sung Hee
    Jiang, Hongmei
    Liu, Lei
    FRONTIERS IN GENETICS, 2024, 15
  • [9] Stochastic Quasi-Likelihood for Case-Control Point Pattern Data
    Xu, Ganggang
    Waagepetersen, Rasmus
    Guan, Yongtao
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2019, 114 (526) : 631 - 644
  • [10] Generalized Quasi-Likelihood Ratio Tests for Semiparametric Analysis of Covariance Models in Longitudinal Data
    Tang, Jin
    Li, Yehua
    Guan, Yongtao
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (514) : 736 - 747