Diurnal Cycle of Rapid Air Temperature Fluctuations at Jezero Crater: Probability Distributions, Exponential Tails, Scaling, and Intermittency

被引:4
作者
Juarez, M. de la Torre [1 ]
Chavez, A. [1 ,2 ]
Tamppari, L. K. [1 ]
Munguira, A. [3 ]
Martinez, G. [4 ]
Hueso, R. [3 ]
Chide, B. [5 ]
Murdoch, N. [6 ]
Stott, A. E. [6 ]
Navarro, S. [7 ]
Sanchez-Lavega, A.
Orton, G. S. [1 ]
Viudez-Moreiras, D. [7 ]
Banfield, D. J. [8 ,9 ]
Rodriguez-Manfredi, J. A. [7 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA
[2] Univ Minnesota, Minneapolis, MN USA
[3] Univ Basque Country, Escuela Ingn Bilbao, Fis Aplicada, Bilbao, Spain
[4] Lunar & Planetary Inst, Houston, TX USA
[5] Los Alamos Natl Lab, Space & Planetary Explorat Team, Los Alamos, NM USA
[6] Univ Toulouse, Inst Super Aeronaut & Espace ISAE SUPAERO, Toulouse, France
[7] Ctr Astrobiol INTA CSIC, Madrid, Spain
[8] NASA Ames Res Ctr, Moffett Field, CA USA
[9] Cornell Univ, Ithaca, NY USA
基金
美国国家航空航天局;
关键词
intermittency; temperature fluctuations; atmospheric surface layer; Mars; turbulence; scaling; TURBULENT SPECTRA; MARS; LAYER;
D O I
10.1029/2022JE007458
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We study the diurnal cycle of rapid thermal fluctuations observed by the Mars Environmental Dynamics Analyzer, onboard the Perseverance rover at Jezero Crater, as a function of local time and season. In this context, rapid refers to periods between 15 min and half a second. Some insight is also provided into wind fluctuations that are the base for most of the existing theories on turbulent flows. The results expand the observations from previous Mars missions, namely Viking, Mars Pathfinder, and Phoenix, and they add to our knowledge of near-surface fluctuations on Mars. (a) Probability distribution functions of the fluctuations are determined and found to have exponential tails. This means that models that represent the interaction within the environment and with the surface as a stochastic forcing need to account for the sudden events responsible for the exponential tails. (b) Power density spectra are calculated and show several dynamical regimes with different slopes associated to forcing, an intermediate regime, and a higher frequency regime. All change with time of the day. The results imply that the fastest regime is not a universal scenario for the temperature fluctuations near the surface. (c) The scale dependence of the fluctuations confirms the existence of intermittent outbursts associated to the slower fluctuations, possibly associated to the larger scale structures, and explains why the spectral density slopes do not follow Kolmogorov's law. Understanding the role of larger scale structures would help refine scaling theories of the near-surface Martian atmosphere and its interactions with the surface.
引用
收藏
页数:19
相关论文
共 61 条
  • [1] Arya P., 2001, INTRO MICROMETEOROLO
  • [2] The atmosphere of Mars as observed by InSight
    Banfield, Don
    Spiga, Aymeric
    Newman, Claire
    Forget, Francois
    Lemmon, Mark
    Lorenz, Ralph
    Murdoch, Naomi
    Viudez-Moreiras, Daniel
    Pla-Garcia, Jorge
    Garcia, Raphael F.
    Lognonne, Philippe
    Karatekin, Ozgur
    Perrin, Clement
    Martire, Leo
    Teanby, Nicholas
    Hove, Bart Van
    Maki, Justin N.
    Kenda, Balthasar
    Mueller, Nils T.
    Rodriguez, Sebastien
    Kawamura, Taichi
    McClean, John B.
    Stott, Alexander E.
    Charalambous, Constantinos
    Millour, Ehouarn
    Johnson, Catherine L.
    Mittelholz, Anna
    Maattanen, Anni
    Lewis, Stephen R.
    Clinton, John
    Staehler, Simon C.
    Ceylan, Savas
    Giardini, Domenico
    Warren, Tristram
    Pike, William T.
    Daubar, Ingrid
    Golombek, Matthew
    Rolland, Lucie
    Widmer-Schnidrig, Rudolf
    Mimoun, David
    Beucler, Eric
    Jacob, Alice
    Lucas, Antoine
    Baker, Mariah
    Ansan, Veronique
    Hurst, Kenneth
    Mora-Sotomayor, Luis
    Navarro, Sara
    Torres, Josefina
    Lepinette, Alain
    [J]. NATURE GEOSCIENCE, 2020, 13 (03) : 190 - +
  • [3] Mars 2020 Rover Influence on Wind Measurements at Low Reynolds Number
    Bardera, R.
    Garcia-Magarino, A.
    Sor, S.
    Urdiales, M.
    [J]. JOURNAL OF SPACECRAFT AND ROCKETS, 2019, 56 (04) : 1107 - 1113
  • [4] EXTENDED SELF-SIMILARITY IN TURBULENT FLOWS
    BENZI, R
    CILIBERTO, S
    TRIPICCIONE, R
    BAUDET, C
    MASSAIOLI, F
    SUCCI, S
    [J]. PHYSICAL REVIEW E, 1993, 48 (01): : R29 - R32
  • [5] THE MECHANISM OF STOCHASTIC RESONANCE
    BENZI, R
    SUTERA, A
    VULPIANI, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (11): : L453 - L457
  • [6] Biferale L., 1997, Scaling in turbulent flows, V263, P263
  • [7] TURBULENT SPECTRA IN A STABLY STRATIFIED ATMOSPHERE
    BOLGIANO, R
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH, 1959, 64 (12): : 2226 - 2229
  • [8] The Meaning of Stromatolites
    Bosak, Tanja
    Knoll, Andrew H.
    Petroff, Alexander P.
    [J]. ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, VOL 41, 2013, 41 : 21 - 44
  • [9] CHARNEY JG, 1971, J ATMOS SCI, V28, P1087, DOI 10.1175/1520-0469(1971)028<1087:GT>2.0.CO
  • [10] 2