Self-Powered Piezoelectric Actuation Systems Based on Triboelectric Nanogenerator

被引:5
|
作者
Zheng, Zhipeng [1 ]
Wang, Binquan [1 ]
Yin, Hao [1 ]
Chen, Yujie [1 ]
Bao, Yi [2 ]
Guo, Yiping [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[2] Naval Med Univ, Changzheng Hosp, Dept Endocrinol & Metab, Shanghai 200443, Peoples R China
关键词
charge driven; discharging; liquid transport; piezoelectric actuators; triboelectric nanogenerators; HYSTERESIS; INTERNET; THINGS;
D O I
10.1002/adfm.202302648
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sustainable power supply via triboelectric nanogenerator (TENG) is attractive for self-powered actuation systems in the era of the Internet of Things (IoTs). Herein, a low-power actuation scheme enabled by the multilayered TENG for piezoelectric actuators, including the stack, unimorph, and micro-fiber composite (MFC) actuator, is reported. The working principles of TENG-powered piezoelectric actuators and their displacement characteristics in direct current (DC) and alternating current (AC) modes are theoretically investigated. Compared with conventional high-voltage power sources, the multilayered TENG delivers a maximum power of only 10.17 mW, providing a low-power alternative for piezoelectric actuator with self-powered capability and operational safety. Meanwhile, the hysteresis of the stack actuator that is critical in precise positioning control is reduced by 58.1%. A precise positioning system is demonstrated by utilizing the TENG-powered stack actuator as an object stage for microscope focusing applications. The feasibility of vibration control with a 76.7% reduction in vibration amplitude is also verified via two TENG-powered MFC actuators. A rectifying control circuit comprising the rectifier and gas discharging tube is established to implement AC-DC conversion and discharging control, achieving a larger displacement of the unimorph actuator. The TENG-powered piezoelectric micropump demonstrates its potential application in liquid transport through straightforward operation.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] All-Nanofiber-Based Ultralight Stretchable Triboelectric Nanogenerator for Self-Powered Wearable Electronics
    Zhao, Shuyu
    Wang, Jiaona
    Du, Xinyu
    Wang, Jing
    Cao, Ran
    Yin, Yingying
    Zhang, Xiuling
    Yuan, Zuqing
    Xing, Yi
    Pui, David Y. H.
    Li, Congju
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (05): : 2326 - 2332
  • [22] A Self-Powered Smart Roller-Bearing Based on a Triboelectric Nanogenerator for Measurement of Rotation Movement
    Choi, Daehwan
    Sung, Taehoon
    Kwon, Jang-Yeon
    ADVANCED MATERIALS TECHNOLOGIES, 2018, 3 (12):
  • [23] A Self-Powered, Skin Adhesive, and Flexible Human-Machine Interface Based on Triboelectric Nanogenerator
    Wu, Xujie
    Yang, Ziyi
    Dong, Yu
    Teng, Lijing
    Li, Dan
    Han, Hang
    Zhu, Simian
    Sun, Xiaomin
    Zeng, Zhu
    Zeng, Xiangyu
    Zheng, Qiang
    NANOMATERIALS, 2024, 14 (16)
  • [24] Investigation of a self-powered biosensor using a brush-based triboelectric nanogenerator and an enzymatic reaction
    Komatsu, Tomohiro
    Uejima, Rino
    Sakamoto, Hiroaki
    BIOELECTROCHEMISTRY, 2025, 163
  • [25] Natural wood-based triboelectric nanogenerator as self-powered sensing for smart homes and floors
    Hao, Saifei
    Jiao, Jingyi
    Chen, Yandong
    Wang, Zhong Lin
    Cao, Xia
    NANO ENERGY, 2020, 75
  • [26] Self-powered bionic antenna based on triboelectric nanogenerator for micro-robotic tactile sensing
    Zhu, Dekuan
    Lu, Jiangfeng
    Zheng, Mingjie
    Wang, Dongkai
    Wang, Jianyu
    Liu, Yixin
    Wang, Xiaohao
    Zhang, Min
    NANO ENERGY, 2023, 114
  • [27] Stretchable Woven Fabric-Based Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensing
    Chen, Lijun
    Wang, Tairan
    Shen, Yunchu
    Wang, Fumei
    Chen, Chaoyu
    NANOMATERIALS, 2023, 13 (05)
  • [28] Simultaneous energy harvesting and signal sensing from a single triboelectric nanogenerator for intelligent self-powered wireless sensing systems
    Lu, Shan
    Gao, Lingxiao
    Chen, Xin
    Tong, Daqiao
    Lei, Wenqian
    Yuan, Pengfei
    Mu, Xiaojing
    Yu, Hua
    NANO ENERGY, 2020, 75
  • [29] Utilizing Breakdown Discharge of Self-Powered Triboelectric Nanogenerator to Realize Multimodal Sterilization
    Chen, Junhuan
    Li, Jiawei
    Wang, Peng
    Peng, Yating
    Wang, Congyu
    Wang, Junlei
    Zhang, Dun
    ADVANCED SUSTAINABLE SYSTEMS, 2023, 7 (03)
  • [30] An Innovative Concept: Free Energy Harvesting Through Self-Powered Triboelectric Nanogenerator
    Hussain, Izhar
    Khan, Saeed Ahmed
    Lakho, Shamsuddin
    Shah, Madad Ali
    Ali, Ahmed
    Altameem, Torki
    Fouad, H.
    Akhtar, M. S.
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2021, 16 (11) : 1844 - 1849