Coalgebra symmetry for discrete systems

被引:4
作者
Gubbiotti, G. [1 ,4 ]
Latini, D. [2 ]
Tapley, B. K. [3 ,5 ]
机构
[1] Scuola Int Super Avanzati, Via Bonomea 265, I-34136 Trieste, Italy
[2] Univ Queensland, Sch Math & Phys, Brisbane, Australia
[3] NTNU, Dept Math Sci, N-7491 Trondheim, Norway
[4] Univ Milan, Dipartimento Matemat Federigo Enriques, Via C Saldini 50, I-20133 Milan, Italy
[5] SINTEF Digital, Dept Math & Cybernet, N-0373 Oslo, Norway
基金
澳大利亚研究理事会;
关键词
coalgebra symmetry; discrete integrable systems; algebraic methods in integrable systems; integrability indicators; INTEGRABLE MAPPINGS; MAPS; DYNAMICS; SPACES; FAMILY;
D O I
10.1088/1751-8121/acc992
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we introduce the notion of coalgebra symmetry for discrete systems. With this concept we prove that all discrete radially symmetric systems in standard form are quasi-integrable and that all variational discrete quasi-radially symmetric systems in standard form are Poincare-Lyapunov-Nekhoroshev maps of order N - 2, where N are the degrees of freedom of the system. We also discuss the integrability properties of several vector systems which are generalisations of well-known one degree of freedom discrete integrable systems, including two N degrees of freedom autonomous discrete Painleve I equations and an N degrees of freedom McMillan map.
引用
收藏
页数:34
相关论文
共 74 条
[1]  
ARNOLD VI, 1990, BOL SOC BRAS MAT, V21, DOI [10.1007/BF01236277, DOI 10.1007/BF01236277]
[2]   A maximally superintegrable system on an n-dimensional space of nonconstant curvature [J].
Ballesteros, A. ;
Enciso, A. ;
Herranz, F. J. ;
Ragnisco, O. .
PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (04) :505-509
[3]  
Ballesteros A, 2002, J PHYS A-MATH GEN, V35, P8197, DOI 10.1088/0305-4470/35/39/305
[4]   (Super)integrability from coalgebra symmetry: formalism and applications [J].
Ballesteros, A. ;
Blasco, A. ;
Herranz, F. J. ;
Musso, F. ;
Ragnisco, O. .
WORKSHOP ON HIGHER SYMMETRIES IN PHYSICS, 2009, 175
[5]   Two-photon algebra and integrable Hamiltonian systems [J].
Ballesteros, A ;
Herranz, FJ .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2001, 8 (Suppl 1) :18-22
[6]   A systematic construction of completely integrable Hamiltonians from coalgebras [J].
Ballesteros, A ;
Ragnisco, O .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (16) :3791-3813
[7]   Universal integrals for superintegrable systems on N-dimensional spaces of constant curvature [J].
Ballesteros, Angel ;
Herranz, Francisco J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (02) :F51-F59
[8]   Quantum mechanics on spaces of nonconstant curvature: The oscillator problem and superintegrability [J].
Ballesteros, Angel ;
Enciso, Alberto ;
Herranz, Francisco J. ;
Ragnisco, Orlando ;
Riglioni, Danilo .
ANNALS OF PHYSICS, 2011, 326 (08) :2053-2073
[9]   N-dimensional superintegrable systems from symplectic realizations of Lie coalgebras [J].
Ballesteros, Angel ;
Blasco, Alfonso .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (30)
[10]   Maximal superintegrability of the generalized Kepler-Coulomb system on N-dimensional curved spaces [J].
Ballesteros, Angel ;
Herranz, Francisco J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (24)