Integrated Modeling and Adaptive Parameter Estimation for Hammerstein Systems With Asymmetric Dead-Zone

被引:7
作者
He, Haoran [1 ]
Na, Jing [1 ]
Huang, Yingbo [1 ]
Liu, Tao [2 ]
机构
[1] Kunming Univ Sci & Technol, Fac Mech & Elect Engn, Yunnan Int Joint Lab Intelligent Control & Applica, Kunming 650500, Peoples R China
[2] Dalian Univ Technol, Inst Adv Control Technol, Key Lab Intelligent Control, Optimizat Ind Equipment Minist Educt, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Articulated manipulator; hammerstein system; K-filter; nonsmooth dynamics; parameter estimation; RECURSIVE-IDENTIFICATION; NONLINEARITIES; CONVERGENCE;
D O I
10.1109/TIE.2022.3183343
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Hammerstein model has been successfully used to model various industrial systems, while the parameter estimation of such a model is difficult. In this article, a novel adaptive parameter estimation scheme is proposed for the continuous-time Hammerstein model with an asymmetric dead-zone, which avoids using the immeasurable intermediate variables and system states. First, a continuous piecewise linear neural network is adopted to reformulate the dead-zone dynamics, thus facilitating the derivation of dead-zone characteristic parameters. By applying the K-filter operation, an integrated parametric model of the Hammerstein system with input/output measurements is obtained, which allows separating the observer from the parameter estimation. Hence, two adaptive laws based on the estimation error are given to obtain the estimation of unknown parameters of the dead-zone and the linear subsystem. Then, an observer with the estimated parameters is designed to reconstruct the unknown system states. Theoretical analysis demonstrates that both the observer and estimation errors converge to zero. The validity of the proposed methods is verified by numerical simulations and practical experiments on an articulated manipulator.
引用
收藏
页码:4942 / 4951
页数:10
相关论文
共 37 条
[1]   Modeling and Identification of Nonlinear Systems: A Review of the Multimodel Approach-Part 1 [J].
Adeniran, Ahmed Adebowale ;
El Ferik, Sami .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (07) :1149-1159
[2]   Convergence of the iterative Hammerstein system identification algorithm [J].
Bai, EW ;
Li, D .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (11) :1929-1940
[3]   Identification of linear systems with hard input nonlinearities of known structure [J].
Bai, EW .
AUTOMATICA, 2002, 38 (05) :853-860
[4]   Automatic nonlinear auto-tuning method for Hammerstein modeling of electrical drives [J].
Balestrino, A ;
Landi, A ;
Ould-Zmirli, M ;
Sani, L .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2001, 48 (03) :645-655
[5]   Pathwise convergence of recursive identification algorithms for Hammerstein systems [J].
Chen, HF .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (10) :1641-1649
[6]   Modeling hysteresis in piezoelectric actuators using NARMAX models [J].
Deng, Liang ;
Tan, Yonghong .
SENSORS AND ACTUATORS A-PHYSICAL, 2009, 149 (01) :106-112
[7]   Nonsmooth Predictive Control for Wiener Systems With Backlash-Like Hysteresis [J].
Dong, Ruili ;
Tan, Yonghong ;
Janschek, Klaus .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2016, 21 (01) :17-28
[8]   Hammerstein Systems Identification in Presence of Hard Nonlinearities of Preload and Dead-Zone Type [J].
Giri, F. ;
Rochdi, Y. ;
Chaoui, F. Z. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (09) :2174-2178
[9]  
Haoran He, 2020, Proceedings of 2019 Chinese Intelligent Systems Conference. Lecture Notes in Electrical Engineering (LNEE 594), P470, DOI 10.1007/978-981-32-9698-5_53
[10]   Gray-Box Parsimonious Subspace Identification of Hammerstein-Type Systems [J].
Hou, Jie ;
Chen, Fengwei ;
Li, Penghua ;
Zhu, Zhiqin .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (10) :9941-9951