Changes of Extreme Precipitation in CMIP6 Projections: Should We Use Stationary or Nonstationary Models?

被引:14
作者
Abdelmoaty, Hebatallah Mohamed [1 ,2 ]
Papalexiou, Simon Michael [1 ,3 ,4 ]
机构
[1] Univ Calgary, Dept Civil Engn, Calgary, AB, Canada
[2] Cairo Univ, Fac Engn, Irrigat & Hydraul Dept, Giza, Egypt
[3] Univ Saskatchewan, Global Inst Water Secur, Saskatoon, SK, Canada
[4] Czech Univ Life Sci, Fac Environm Sci, Prague, Czech Republic
基金
加拿大自然科学与工程研究理事会;
关键词
Climate models; Climate variability; Risk assessment; SOUTH-AMERICA; VALUE DISTRIBUTIONS; FREQUENCY-ANALYSIS; CLIMATE EXTREMES; TEMPERATURE; IMPACT; PERIODS; VALUES; CHINA; RISK;
D O I
10.1175/JCLI-D-22-0467.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
With global warming, the behavior of extreme precipitation shifts toward nonstationarity. Here, we analyze the annual maxima of daily precipitation (AMP) all over the globe using projections of the latest phase of the Coupled corrected using a semiparametric quantile mapping, a novel technique extended to extreme precipitation. This analysis 1) explores the variability of future AMP globally and 2) investigates the performance of stationary and nonstationary models in describing future AMP with trends. The results show that global warming potentially intensifies AMP. For the nonparametric analysis, the 33-yr precipitation levels are increasing up to 33.2 mm compared to the historical period. The parametric analysis shows that the return period of 100-yr historical events will decrease approximately to 50 and 70 years in the Northern and Southern Hemispheres, respectively. Under the highest emission scenario, the projected 100-yr levels are expected to increase by 7.5%-21% over the historical levels. Using stationary models to estimate the 100-yr return level for AMP projections with trends leads to an underestimation of 3.4% on average. Extensive Monte Carlo experiments are implemented to explain this underestimation.
引用
收藏
页码:2999 / 3014
页数:16
相关论文
共 84 条
[71]   Does higher surface temperature intensify extreme precipitation? [J].
Utsumi, Nobuyuki ;
Seto, Shinta ;
Kanae, Shinjiro ;
Maeda, Eduardo Eiji ;
Oki, Taikan .
GEOPHYSICAL RESEARCH LETTERS, 2011, 38
[72]   Attribution of extreme rainfall from Hurricane Harvey, August 2017 [J].
van Oldenborgh, Geert Jan ;
van der Wiel, Karin ;
Sebastian, Antonia ;
Singh, Roop ;
Arrighi, Julie ;
Otto, Friederike ;
Haustein, Karsten ;
Li, Sihan ;
Vecchi, Gabriel ;
Cullen, Heidi .
ENVIRONMENTAL RESEARCH LETTERS, 2017, 12 (12)
[73]   Nonstationary Frequency Analysis of Annual Maximum Rainfall Using Climate Covariates [J].
Vasiliades, L. ;
Galiatsatou, P. ;
Loukas, A. .
WATER RESOURCES MANAGEMENT, 2015, 29 (02) :339-358
[74]   Heat stored in the Earth system: where does the energy go? [J].
von Schuckmann, Karina ;
Cheng, Lijing ;
Palmer, Matthew D. ;
Hansen, James ;
Tassone, Caterina ;
Aich, Valentin ;
Adusumilli, Susheel ;
Beltrami, Hugo ;
Boyer, Tim ;
Cuesta-Valero, Francisco Jose ;
Desbruyeres, Damien ;
Domingues, Catia ;
Garcia-Garcia, Almudena ;
Gentine, Pierre ;
Gilson, John ;
Gorfer, Maximilian ;
Haimberger, Leopold ;
Ishii, Masayoshi ;
Johnson, Gregory C. ;
Killick, Rachel ;
King, Brian A. ;
Kirchengast, Gottfried ;
Kolodziejczyk, Nicolas ;
Lyman, John ;
Marzeion, Ben ;
Mayer, Michael ;
Monier, Maeva ;
Monselesan, Didier Paolo ;
Purkey, Sarah ;
Roemmich, Dean ;
Schweiger, Axel ;
Seneviratne, Sonia, I ;
Shepherd, Andrew ;
Slater, Donald A. ;
Steiner, Andrea K. ;
Straneo, Fiammetta ;
Timmermans, Mary-Louise ;
Wijffels, Susan E. .
EARTH SYSTEM SCIENCE DATA, 2020, 12 (03) :2013-2041
[75]   Combined effects of the Pacific Decadal Oscillation and El Nino-Southern Oscillation on Global Land Dry-Wet Changes [J].
Wang, Shanshan ;
Huang, Jianping ;
He, Yongli ;
Guan, Yuping .
SCIENTIFIC REPORTS, 2014, 4
[76]   Characterization of long period return values of extreme daily temperature and precipitation in the CMIP6 models: Part 1, model evaluation [J].
Wehner, Michael ;
Gleckler, Peter ;
Lee, Jiwoo .
WEATHER AND CLIMATE EXTREMES, 2020, 30
[77]   Future high-resolution El Nino/Southern Oscillation dynamics [J].
Wengel, Christian ;
Lee, Sun-Seon ;
Stuecker, Malte F. ;
Timmermann, Axel ;
Chu, Jung-Eun ;
Schloesser, Fabian .
NATURE CLIMATE CHANGE, 2021, 11 (09) :758-+
[78]   Non-stationary frequency analysis of extreme precipitation in South Korea using peaks-over-threshold and annual maxima [J].
Wi, Sungwook ;
Valdes, Juan B. ;
Steinschneider, Scott ;
Kim, Tae-Woong .
STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2016, 30 (02) :583-606
[79]   CMIP5 CLIMATE MODEL ANALYSES Climate Extremes in the United States [J].
Wuebbles, Donald ;
Meehl, Gerald ;
Hayhoe, Katharine ;
Karl, Thomas R. ;
Kunkel, Kenneth ;
Santer, Benjamin ;
Wehner, Michael ;
Colle, Brian ;
Fischer, Erich M. ;
Fu, Rong ;
Goodman, Alex ;
Janssen, Emily ;
Kharin, Viatcheslav ;
Lee, Huikyo ;
Li, Wenhong ;
Long, Lindsey N. ;
Olsen, Seth C. ;
Pan, Zaitao ;
Seth, Anji ;
Sheffield, Justin ;
Sun, Liqiang .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2014, 95 (04) :571-583
[80]   Projected Changes in Temperature and Precipitation Extremes over China as Measured by 50-yr Return Values and Periods Based on a CMIP5 Ensemble [J].
Xu, Ying ;
Gao, Xuejie ;
Giorgi, Filippo ;
Zhou, Botao ;
Shi, Ying ;
Wu, Jie ;
Zhang, Yongxiang .
ADVANCES IN ATMOSPHERIC SCIENCES, 2018, 35 (04) :376-388