Changes of Extreme Precipitation in CMIP6 Projections: Should We Use Stationary or Nonstationary Models?

被引:14
作者
Abdelmoaty, Hebatallah Mohamed [1 ,2 ]
Papalexiou, Simon Michael [1 ,3 ,4 ]
机构
[1] Univ Calgary, Dept Civil Engn, Calgary, AB, Canada
[2] Cairo Univ, Fac Engn, Irrigat & Hydraul Dept, Giza, Egypt
[3] Univ Saskatchewan, Global Inst Water Secur, Saskatoon, SK, Canada
[4] Czech Univ Life Sci, Fac Environm Sci, Prague, Czech Republic
基金
加拿大自然科学与工程研究理事会;
关键词
Climate models; Climate variability; Risk assessment; SOUTH-AMERICA; VALUE DISTRIBUTIONS; FREQUENCY-ANALYSIS; CLIMATE EXTREMES; TEMPERATURE; IMPACT; PERIODS; VALUES; CHINA; RISK;
D O I
10.1175/JCLI-D-22-0467.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
With global warming, the behavior of extreme precipitation shifts toward nonstationarity. Here, we analyze the annual maxima of daily precipitation (AMP) all over the globe using projections of the latest phase of the Coupled corrected using a semiparametric quantile mapping, a novel technique extended to extreme precipitation. This analysis 1) explores the variability of future AMP globally and 2) investigates the performance of stationary and nonstationary models in describing future AMP with trends. The results show that global warming potentially intensifies AMP. For the nonparametric analysis, the 33-yr precipitation levels are increasing up to 33.2 mm compared to the historical period. The parametric analysis shows that the return period of 100-yr historical events will decrease approximately to 50 and 70 years in the Northern and Southern Hemispheres, respectively. Under the highest emission scenario, the projected 100-yr levels are expected to increase by 7.5%-21% over the historical levels. Using stationary models to estimate the 100-yr return level for AMP projections with trends leads to an underestimation of 3.4% on average. Extensive Monte Carlo experiments are implemented to explain this underestimation.
引用
收藏
页码:2999 / 3014
页数:16
相关论文
共 84 条
[21]  
Cabré MF, 2016, ATMOSFERA, V29, P35, DOI 10.20937/ATM.2016.29.01.04
[22]   Selecting "the best" nonstationary Generalized Extreme Value (GEV) distribution: on the influence of different numbers of GEV-models [J].
Freitas Xavier, Ana Carolina ;
Blain, Gabriel Constantino ;
Bueno de Morais, Marcos Vinicius ;
Sobierajski, Graciela da Rocha .
BRAGANTIA, 2019, 78 (04) :606-621
[23]   Nonstationary modeling of extreme precipitation in China [J].
Gao, Meng ;
Mo, Dingyuan ;
Wu, Xiaoqing .
ATMOSPHERIC RESEARCH, 2016, 182 :1-9
[24]   Future changes in precipitation extremes over Southeast Asia: insights from CMIP6 multi-model ensemble [J].
Ge, Fei ;
Zhu, Shoupeng ;
Luo, Haolin ;
Zhi, Xiefei ;
Wang, Hao .
ENVIRONMENTAL RESEARCH LETTERS, 2021, 16 (02)
[25]   Generalizations of the KPSS-test for stationarity [J].
Hobijn, B ;
Franses, PH ;
Ooms, M .
STATISTICA NEERLANDICA, 2004, 58 (04) :483-502
[26]  
Jones PW, 1999, MON WEATHER REV, V127, P2204, DOI 10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO
[27]  
2
[28]  
Kendall M. G., 1948, Rank correlation methods.
[29]   Changes in temperature and precipitation extremes in the CMIP5 ensemble [J].
Kharin, V. V. ;
Zwiers, F. W. ;
Zhang, X. ;
Wehner, M. .
CLIMATIC CHANGE, 2013, 119 (02) :345-357
[30]   Human influence has intensified extreme precipitation in North America [J].
Kirchmeier-Young, Megan C. ;
Zhang, Xuebin .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (24) :13308-13313