Changes of Extreme Precipitation in CMIP6 Projections: Should We Use Stationary or Nonstationary Models?

被引:10
|
作者
Abdelmoaty, Hebatallah Mohamed [1 ,2 ]
Papalexiou, Simon Michael [1 ,3 ,4 ]
机构
[1] Univ Calgary, Dept Civil Engn, Calgary, AB, Canada
[2] Cairo Univ, Fac Engn, Irrigat & Hydraul Dept, Giza, Egypt
[3] Univ Saskatchewan, Global Inst Water Secur, Saskatoon, SK, Canada
[4] Czech Univ Life Sci, Fac Environm Sci, Prague, Czech Republic
基金
加拿大自然科学与工程研究理事会;
关键词
Climate models; Climate variability; Risk assessment; SOUTH-AMERICA; VALUE DISTRIBUTIONS; FREQUENCY-ANALYSIS; CLIMATE EXTREMES; TEMPERATURE; IMPACT; PERIODS; VALUES; CHINA; RISK;
D O I
10.1175/JCLI-D-22-0467.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
With global warming, the behavior of extreme precipitation shifts toward nonstationarity. Here, we analyze the annual maxima of daily precipitation (AMP) all over the globe using projections of the latest phase of the Coupled corrected using a semiparametric quantile mapping, a novel technique extended to extreme precipitation. This analysis 1) explores the variability of future AMP globally and 2) investigates the performance of stationary and nonstationary models in describing future AMP with trends. The results show that global warming potentially intensifies AMP. For the nonparametric analysis, the 33-yr precipitation levels are increasing up to 33.2 mm compared to the historical period. The parametric analysis shows that the return period of 100-yr historical events will decrease approximately to 50 and 70 years in the Northern and Southern Hemispheres, respectively. Under the highest emission scenario, the projected 100-yr levels are expected to increase by 7.5%-21% over the historical levels. Using stationary models to estimate the 100-yr return level for AMP projections with trends leads to an underestimation of 3.4% on average. Extensive Monte Carlo experiments are implemented to explain this underestimation.
引用
收藏
页码:2999 / 3014
页数:16
相关论文
共 50 条
  • [1] Quantifying CMIP6 model uncertainties in extreme precipitation projections
    John, Amal
    Douville, Herve
    Ribes, Aurelien
    Yiou, Pascal
    WEATHER AND CLIMATE EXTREMES, 2022, 36
  • [2] Assessing Arctic wetting: Performances of CMIP6 models and projections of precipitation changes
    Cai, Ziyi
    You, Qinglong
    Chen, Hans W.
    Zhang, Ruonan
    Zuo, Zhiyan
    Chen, Deliang
    Cohen, Judah
    Screen, James A.
    ATMOSPHERIC RESEARCH, 2024, 297
  • [3] Global Land Monsoon Precipitation Changes in CMIP6 Projections
    Chen, Ziming
    Zhou, Tianjun
    Zhang, Lixia
    Chen, Xiaolong
    Zhang, Wenxia
    Jiang, Jie
    GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (14)
  • [4] Spatiotemporal projections of extreme precipitation over Algeria based on CMIP6 global climate models
    Sahabi-Abed, Salah
    Ayugi, Brian Odhiambo
    Selmane, Ahmed Nour-EL-Islam
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2023, 9 (03) : 3011 - 3028
  • [5] Projections of precipitation over China based on CMIP6 models
    Jiaxi Tian
    Zengxin Zhang
    Zeeshan Ahmed
    Leying Zhang
    Buda Su
    Hui Tao
    Tong Jiang
    Stochastic Environmental Research and Risk Assessment, 2021, 35 : 831 - 848
  • [6] Projections of precipitation over China based on CMIP6 models
    Tian, Jiaxi
    Zhang, Zengxin
    Ahmed, Zeeshan
    Zhang, Leying
    Su, Buda
    Tao, Hui
    Jiang, Tong
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2021, 35 (04) : 831 - 848
  • [7] Climate change projections in Guatemala: temperature and precipitation changes according to CMIP6 models
    Paris Rivera
    Modeling Earth Systems and Environment, 2024, 10 : 2031 - 2049
  • [8] Spatiotemporal projections of extreme precipitation over Algeria based on CMIP6 global climate models
    Salah Sahabi-Abed
    Brian Odhiambo Ayugi
    Ahmed Nour-EL-Islam Selmane
    Modeling Earth Systems and Environment, 2023, 9 : 3011 - 3028
  • [9] Climate change projections in Guatemala: temperature and precipitation changes according to CMIP6 models
    Rivera, Paris
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2024, 10 (02) : 2031 - 2049
  • [10] Evaluation of extreme precipitation over Asia in CMIP6 models
    Tianyun Dong
    Wenjie Dong
    Climate Dynamics, 2021, 57 : 1751 - 1769