Changes of Extreme Precipitation in CMIP6 Projections: Should We Use Stationary or Nonstationary Models?

被引:14
作者
Abdelmoaty, Hebatallah Mohamed [1 ,2 ]
Papalexiou, Simon Michael [1 ,3 ,4 ]
机构
[1] Univ Calgary, Dept Civil Engn, Calgary, AB, Canada
[2] Cairo Univ, Fac Engn, Irrigat & Hydraul Dept, Giza, Egypt
[3] Univ Saskatchewan, Global Inst Water Secur, Saskatoon, SK, Canada
[4] Czech Univ Life Sci, Fac Environm Sci, Prague, Czech Republic
基金
加拿大自然科学与工程研究理事会;
关键词
Climate models; Climate variability; Risk assessment; SOUTH-AMERICA; VALUE DISTRIBUTIONS; FREQUENCY-ANALYSIS; CLIMATE EXTREMES; TEMPERATURE; IMPACT; PERIODS; VALUES; CHINA; RISK;
D O I
10.1175/JCLI-D-22-0467.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
With global warming, the behavior of extreme precipitation shifts toward nonstationarity. Here, we analyze the annual maxima of daily precipitation (AMP) all over the globe using projections of the latest phase of the Coupled corrected using a semiparametric quantile mapping, a novel technique extended to extreme precipitation. This analysis 1) explores the variability of future AMP globally and 2) investigates the performance of stationary and nonstationary models in describing future AMP with trends. The results show that global warming potentially intensifies AMP. For the nonparametric analysis, the 33-yr precipitation levels are increasing up to 33.2 mm compared to the historical period. The parametric analysis shows that the return period of 100-yr historical events will decrease approximately to 50 and 70 years in the Northern and Southern Hemispheres, respectively. Under the highest emission scenario, the projected 100-yr levels are expected to increase by 7.5%-21% over the historical levels. Using stationary models to estimate the 100-yr return level for AMP projections with trends leads to an underestimation of 3.4% on average. Extensive Monte Carlo experiments are implemented to explain this underestimation.
引用
收藏
页码:2999 / 3014
页数:16
相关论文
共 84 条
[1]   Climate Extremes and Compound Hazards in a Warming World [J].
AghaKouchak, Amir ;
Chiang, Felicia ;
Huning, Laurie S. ;
Love, Charlotte A. ;
Mallakpour, Iman ;
Mazdiyasni, Omid ;
Moftakhari, Hamed ;
Papalexiou, Simon Michael ;
Ragno, Elisa ;
Sadegh, Mojtaba .
ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, VOL 48, 2020, 2020, 48 :519-548
[2]   Multi-criteria evaluation of CMIP5 GCMs for climate change impact analysis [J].
Ahmadalipour, Ali ;
Rana, Arun ;
Moradkhani, Hamid ;
Sharma, Ashish .
THEORETICAL AND APPLIED CLIMATOLOGY, 2017, 128 (1-2) :71-87
[3]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[4]   Avoiding pitfalls when using information-theoretic methods [J].
Anderson, DR ;
Burnham, KP .
JOURNAL OF WILDLIFE MANAGEMENT, 2002, 66 (03) :912-918
[5]   A TEST OF GOODNESS OF FIT [J].
ANDERSON, TW ;
DARLING, DA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1954, 49 (268) :765-769
[6]   Future Changes in Precipitation Extremes over East Africa Based on CMIP6 Models [J].
Ayugi, Brian ;
Dike, Victor ;
Ngoma, Hamida ;
Babaousmail, Hassen ;
Mumo, Richard ;
Ongoma, Victor .
WATER, 2021, 13 (17)
[7]   A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901-present [J].
Becker, A. ;
Finger, P. ;
Meyer-Christoffer, A. ;
Rudolf, B. ;
Schamm, K. ;
Schneider, U. ;
Ziese, M. .
EARTH SYSTEM SCIENCE DATA, 2013, 5 (01) :71-99
[8]   Unusual past dry and wet rainy seasons over Southern Africa and South America from a climate perspective [J].
Bellprat, Omar ;
Lott, Fraser C. ;
Gulizia, Carla ;
Parker, Hannah R. ;
Pampuch, Luana A. ;
Pinto, Izidine ;
Ciavarella, Andrew ;
Stott, Peter A. .
WEATHER AND CLIMATE EXTREMES, 2015, 9 :36-46
[9]   Strong increase in convective precipitation in response to higher temperatures [J].
Berg, Peter ;
Moseley, Christopher ;
Haerter, Jan O. .
NATURE GEOSCIENCE, 2013, 6 (03) :181-185
[10]   Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models [J].
Bony, S ;
Dufresne, JL .
GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (20) :1-4