Second release of the CoRe database of binary neutron star merger waveforms

被引:26
|
作者
Gonzalez, Alejandra [1 ]
Zappa, Francesco [1 ]
Breschi, Matteo [1 ]
Bernuzzi, Sebastiano [1 ]
Radice, David [2 ,3 ,4 ]
Adhikari, Ananya [5 ]
Camilletti, Alessandro [6 ,7 ]
Chaurasia, Swami Vivekanandji [8 ]
Doulis, Georgios [1 ,9 ]
Padamata, Surendra [2 ,3 ]
Rashti, Alireza [2 ,3 ]
Ujevic, Maximiliano [10 ]
Bruegmann, Bernd [1 ]
Cook, William [1 ]
Dietrich, Tim [11 ,12 ]
Perego, Albino [6 ,7 ]
Poudel, Amit [5 ]
Tichy, Wolfgang [5 ]
机构
[1] Friedrich Schiller Univ Jena, Theoret Phys Inst, D-07743 Jena, Germany
[2] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA
[3] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[4] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA
[5] Florida Atlantic Univ, Dept Phys, Boca Raton, FL 33431 USA
[6] Univ Trento, Dipartimento Fis, Via Sommarive 14, I-38123 Trento, Italy
[7] Trento Inst Fundamental Phys & Applicat, INFN TIFPA, Via Sommarive 14, I-38123 Trento, Italy
[8] Stockholm Univ, Oskar Klein Ctr, Dept Astron, AlbaNova, SE-10691 Stockholm, Sweden
[9] Univ Athens, Dept Phys, Athens 15783, Greece
[10] Univ Fed ABC, Ctr Ciencias Nat & Humanas, BR-09210170 Santo Andre, SP, Brazil
[11] Univ Potsdam, Inst Phys & Astron, Haus 28,Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
[12] Albert Einstein Inst, Max Planck Inst Gravitat Phys, Muhlenberg 1, Potsdam, Germany
基金
欧盟地平线“2020”; 美国国家科学基金会;
关键词
binary neutron stars; numerical relativity; gravitational waveforms; NUMERICAL-RELATIVITY SIMULATIONS; EQUATION-OF-STATE; GRAVITATIONAL-WAVES; MASS EJECTION; THERMODYNAMICS CONDITIONS; DYNAMICAL EJECTA; SEARCH TEMPLATES; THRESHOLD MASS; MATTER; COLLAPSE;
D O I
10.1088/1361-6382/acc231
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present the second data release of gravitational waveforms from binary neutron star (BNS) merger simulations performed by the Computational Relativity (CoRE) collaboration. The current database consists of 254 different BNS configurations and a total of 590 individual numerical-relativity simulations using various grid resolutions. The released waveform data contain the strain and the Weyl curvature multipoles up to l = m = 4. They span a significant portion of the mass, mass-ratio, spin and eccentricity parameter space and include targeted configurations to the events GW170817 and GW190425. CoRE simulations are performed with 18 different equations of state, seven of which are finite temperature models, and three of which account for nonhadronic degrees of freedom. About half of the released data are computed with high-order hydrodynamics schemes for tens of orbits to merger; the other half is computed with advanced microphysics. We showcase a standard waveform error analysis and discuss the accuracy of the database in terms of faithfulness. We present ready-to-use fitting formulas for equation of state-insensitive relations at merger (e.g. merger frequency), luminosity peak, and post-merger spectrum.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Multimessenger Bayesian parameter inference of a binary neutron star merger
    Coughlin, Michael W.
    Dietrich, Tim
    Margalit, Ben
    Metzger, Brian D.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 489 (01) : L91 - L96
  • [22] Multi-messenger Observations of a Binary Neutron Star Merger
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Acernese, F.
    Ackley, K.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R. X.
    Adya, V. B.
    Affeldt, C.
    Afrough, M.
    Agarwal, B.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Aiello, L.
    Ain, A.
    Ajith, P.
    Allen, B.
    Allen, G.
    Allocca, A.
    Altin, P. A.
    Amato, A.
    Ananyeva, A.
    Anderson, S. B.
    Anderson, W. G.
    Angelova, S. V.
    Antier, S.
    Appert, S.
    Arai, K.
    Araya, M. C.
    Areeda, J. S.
    Arnaud, N.
    Arun, K. G.
    Ascenzi, S.
    Ashton, G.
    Ast, M.
    Aston, S. M.
    Astone, P.
    Atallah, D. V.
    Aufmuth, P.
    Aulbert, C.
    AultONeal, K.
    Austin, C.
    Avila-Alvarez, A.
    Babak, S.
    Bacon, P.
    Bader, M. K. M.
    ASTROPHYSICAL JOURNAL LETTERS, 2017, 848 (02)
  • [23] Neutrino flavor evolution in binary neutron star merger remnants
    Frensel, Maik
    Wu, Meng-Ru
    Volpe, Cristina
    Perego, Albino
    PHYSICAL REVIEW D, 2017, 95 (02)
  • [24] Impact of high-order tidal terms on binary neutron-star waveforms
    Forteza, Xisco Jimenez
    Abdelsalhin, Tiziano
    Pani, Paolo
    Gualtieri, Leonardo
    PHYSICAL REVIEW D, 2018, 98 (12)
  • [25] Finite-temperature effects in dynamical spacetime binary neutron star merger simulations: validation of the parametric approach
    Raithel, Carolyn A.
    Espino, Pedro
    Paschalidis, Vasileios
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 516 (04) : 4792 - 4804
  • [26] Mass ejection from the merger of binary neutron stars
    Hotokezaka, Kenta
    Kiuchi, Kenta
    Kyutoku, Koutarou
    Okawa, Hirotada
    Sekiguchi, Yu-ichiro
    Shibata, Masaru
    Taniguchi, Keisuke
    PHYSICAL REVIEW D, 2013, 87 (02):
  • [27] The evolution of binary neutron star post-merger remnants: a review
    Sarin, Nikhil
    Lasky, Paul D.
    GENERAL RELATIVITY AND GRAVITATION, 2021, 53 (06)
  • [28] The Gravitational waves merger time distribution of binary neutron star systems
    Beniamini, Paz
    Piran, Tsvi
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 487 (04) : 4847 - 4854
  • [29] The origin of the first neutron star - neutron star merger
    Belczynski, K.
    Askar, A.
    Arca-Sedda, M.
    Chruslinska, M.
    Donnari, M.
    Giersz, M.
    Benacquista, M.
    Spurzem, R.
    Jin, D.
    Wiktorowicz, G.
    Belloni, D.
    ASTRONOMY & ASTROPHYSICS, 2018, 615
  • [30] The evolution of binary neutron star post-merger remnants: a review
    Nikhil Sarin
    Paul D. Lasky
    General Relativity and Gravitation, 2021, 53