Representation of perfect and n-perfect pseudo effect algebras

被引:2
作者
Dvurecenskij, Anatolij [1 ,2 ,3 ]
机构
[1] Slovak Acad Sci, Math Inst, Stefanikova 49, SK-81473 Bratislava, Slovakia
[2] Palacky Univ, Depart Algebra Geom, 17 listopadu 12, CZ-77146 Olomouc, Czech Republic
[3] Constantine Philosopher Univ Nitra, Depart Math, Tr A Hlinku 1, SK-94901 Nitra, Slovakia
关键词
Effect algebra; Pseudo effect algebra; Riesz decomposition property; po-Group; Strong unit; Lexicographic product; Perfect pseudo effect algebra; n-Perfect pseudo effect algebra; Semidirect product; Categorical equivalence;
D O I
10.1016/j.fss.2022.08.015
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A perfect (an n-perfect) pseudo effect algebra can be decomposed into two (n + 1 many) non-empty and mutually comparable slices. They generalize perfect MV-algebras studied in [5]. We characterize such a pseudo effect algebra as an interval in the semidirect product of the po-group Z or n1 Z with a directed po-group G satisfying a stronger type of the Riesz Decomposition Property, RDP1, and the semidirect product is ordered lexicographically. We show that the category of perfect and the category of n-perfect pseudo effect algebras with RDP1 are categorically equivalent to a special category of directed po-groups satisfying RDP1.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:19 / 34
页数:16
相关论文
共 24 条
[1]  
Botur M., 2022, PREPRINT
[2]   Perfect GMV-algebras [J].
Di Nola, A. ;
Dvurecenskij, A. ;
Tsinakis, C. .
COMMUNICATIONS IN ALGEBRA, 2008, 36 (04) :1221-1249
[3]  
Di Nola A., 1994, Studia Logica, V53, P417, DOI 10.1007/BF01057937
[4]   Godel spaces and perfect MV-algebras [J].
Di Nola, Antonio ;
Grigolia, Revaz .
JOURNAL OF APPLIED LOGIC, 2015, 13 (03) :270-284
[5]   Lexicographic MV-algebras and lexicographic states [J].
Diaconescu, Denisa ;
Flaminio, Tommaso ;
Leustean, Ioana .
FUZZY SETS AND SYSTEMS, 2014, 244 :63-85
[6]   Pseudo MV-algebras are intervals in l-groups [J].
Dvurecenskij, A .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 72 :427-445
[7]   Pseudoeffect algebras. II. Group representations [J].
Dvurecenskij, A ;
Vetterlein, T .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2001, 40 (03) :703-726
[8]   Pseudoeffect algebras. I. Basic properties [J].
Dvurecenskij, A ;
Vetterlein, T .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2001, 40 (03) :685-701
[9]  
Dvurecenskij A., 2000, New Trends in Quantum Structures
[10]  
Dvurecenskij A., 2001, Stud. Log., V68, P301, DOI [10.1023/A:1012490620450, DOI 10.1023/A:1012490620450]