Representation of perfect and n-perfect pseudo effect algebras

被引:0
作者
Dvurecenskij, Anatolij [1 ,2 ,3 ]
机构
[1] Slovak Acad Sci, Math Inst, Stefanikova 49, SK-81473 Bratislava, Slovakia
[2] Palacky Univ, Depart Algebra Geom, 17 listopadu 12, CZ-77146 Olomouc, Czech Republic
[3] Constantine Philosopher Univ Nitra, Depart Math, Tr A Hlinku 1, SK-94901 Nitra, Slovakia
关键词
Effect algebra; Pseudo effect algebra; Riesz decomposition property; po-Group; Strong unit; Lexicographic product; Perfect pseudo effect algebra; n-Perfect pseudo effect algebra; Semidirect product; Categorical equivalence;
D O I
10.1016/j.fss.2022.08.015
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A perfect (an n-perfect) pseudo effect algebra can be decomposed into two (n + 1 many) non-empty and mutually comparable slices. They generalize perfect MV-algebras studied in [5]. We characterize such a pseudo effect algebra as an interval in the semidirect product of the po-group Z or n1 Z with a directed po-group G satisfying a stronger type of the Riesz Decomposition Property, RDP1, and the semidirect product is ordered lexicographically. We show that the category of perfect and the category of n-perfect pseudo effect algebras with RDP1 are categorically equivalent to a special category of directed po-groups satisfying RDP1.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:19 / 34
页数:16
相关论文
共 24 条
  • [1] Botur M., 2022, PREPRINT
  • [2] Perfect GMV-algebras
    Di Nola, A.
    Dvurecenskij, A.
    Tsinakis, C.
    [J]. COMMUNICATIONS IN ALGEBRA, 2008, 36 (04) : 1221 - 1249
  • [3] Di Nola A., 1994, Studia Logica, V53, P417, DOI 10.1007/BF01057937
  • [4] Godel spaces and perfect MV-algebras
    Di Nola, Antonio
    Grigolia, Revaz
    [J]. JOURNAL OF APPLIED LOGIC, 2015, 13 (03) : 270 - 284
  • [5] Lexicographic MV-algebras and lexicographic states
    Diaconescu, Denisa
    Flaminio, Tommaso
    Leustean, Ioana
    [J]. FUZZY SETS AND SYSTEMS, 2014, 244 : 63 - 85
  • [6] Pseudo MV-algebras are intervals in l-groups
    Dvurecenskij, A
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 72 : 427 - 445
  • [7] Pseudoeffect algebras. II. Group representations
    Dvurecenskij, A
    Vetterlein, T
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2001, 40 (03) : 703 - 726
  • [8] Pseudoeffect algebras. I. Basic properties
    Dvurecenskij, A
    Vetterlein, T
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2001, 40 (03) : 685 - 701
  • [9] Dvurecenskij A., 2000, NEW TRENDS QUANTUM S
  • [10] Dvurecenskij A., 2001, Studia Logica, V68, P301