Several classes of exponential sums and three-valued Walsh spectrums over finite fields

被引:2
|
作者
Li, Fengwei [1 ,2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Sci, Nanjing 210023, Peoples R China
[2] Zaozhuang Univ, Sch Math & Stat, Zaozhuang 277160, Peoples R China
基金
中国国家自然科学基金;
关键词
Exponential sum; Cyclotomy; Elliptic curve; Walsh spectrum; BINARY LINEAR CODES; CROSS-CORRELATION; SEQUENCES; TRANSFORM;
D O I
10.1016/j.ffa.2022.102142
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let r 1(mod 4) be a prime, ma positive integer, phi(r(m))/2 the multiplicative order of 2 modulo r(m), and q = 2 phi(r(m))/2, where phi(center dot) is the Euler's function. Let gamma be a primitive element of the finite field F-q and alpha = gamma q-1/r(m). In this paper, we shall explicitly calculate the exponential sums S(a) = Sigma(rm-1)(i=0) chi(a alpha(i)), a is an element of F-q, where chi .is the canonical additive character of F-q. As applications, using elliptic curves and cyclotomic numbers over F-r, the three-valued Walsh spectrums of four classes of monomial functions f(a)(x) = Tr-q/2(ax(q-1/rm)) are determined. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:23
相关论文
共 22 条
  • [1] Three Families of Monomial Functions With Three-Valued Walsh Spectrum
    Wu, Yansheng
    Yue, Qin
    Li, Fengwei
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (05) : 3304 - 3314
  • [2] More Functions With Three-Valued Walsh Transform From Linear Combinations
    Wu, Yansheng
    Yue, Qin
    Li, Fengwei
    IEEE COMMUNICATIONS LETTERS, 2019, 23 (04) : 564 - 567
  • [3] TILING, CIRCLE PACKING AND EXPONENTIAL SUMS OVER FINITE FIELDS
    Haessig, C. D.
    Iosevich, A.
    Pakianathan, J.
    Robins, S.
    Vaicunas, L.
    ANALYSIS MATHEMATICA, 2018, 44 (04) : 433 - 449
  • [4] Degree matrices and divisibility of exponential sums over finite fields
    Jianming Chen
    Wei Cao
    Archiv der Mathematik, 2010, 94 : 435 - 441
  • [5] Degree matrices and divisibility of exponential sums over finite fields
    Chen, Jianming
    Cao, Wei
    ARCHIV DER MATHEMATIK, 2010, 94 (05) : 435 - 441
  • [6] Tiling, Circle Packing and Exponential Sums over Finite Fields
    C. D. Haessig
    A. Iosevich
    J. Pakianathan
    S. Robins
    L. Vaicunas
    Analysis Mathematica, 2018, 44 : 433 - 449
  • [7] T-adic exponential sums over finite fields
    Liu, Chunlei
    Wan, Daqing
    ALGEBRA & NUMBER THEORY, 2009, 3 (05) : 489 - 509
  • [8] DEGREE MATRICES AND ESTIMATES FOR EXPONENTIAL SUMS OF POLYNOMIALS OVER FINITE FIELDS
    Cao, Wei
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (07)
  • [9] Proof of a conjectured three-valued family of Weil sums of binomials
    Katz, Daniel J.
    Langevin, Philippe
    ACTA ARITHMETICA, 2015, 169 (02) : 181 - 199
  • [10] A Three-Valued Walsh Transform From Decimations of Helleseth-Gong Sequences
    Gong, Guang
    Helleseth, Tor
    Hu, Honggang
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (02) : 1158 - 1162