Five-gene signature for the prediction of response to immune checkpoint inhibitors in patients with gastric and urothelial carcinomas

被引:2
作者
Kang, So Young [1 ]
Heo, You Jeong [2 ]
Kwon, Ghee Young [1 ]
Lee, Jeeyun [3 ]
Park, Se Hoon [3 ]
Kim, Kyoung-Mee [1 ,4 ,5 ]
机构
[1] Sungkyunkwan Univ, Samsung Med Ctr, Dept Pathol & Translat Genom, Sch Med, Seoul, South Korea
[2] Sungkyunkwan Univ, Samsung Adv Inst Hlth Sci & Technol SAIHST, Samsung Med Ctr, Sch Med, Seoul, South Korea
[3] Sungkyunkwan Univ, Samsung Med Ctr, Dept Med, Div Hematol Oncol,Sch Med, Seoul, South Korea
[4] Samsung Med Ctr, Ctr Compan Diagnost, Seoul, South Korea
[5] Sungkyunkwan Univ, Samsung Med Ctr, Dept Pathol & Translat Genom, Sch Med, 81 Irwon ro, Seoul 06351, South Korea
基金
新加坡国家研究基金会;
关键词
Immune checkpoint inhibitors; Prediction; Biomarker; CD274; Gastric; Urothelial; CANCER; EXPRESSION; PEMBROLIZUMAB; BIOMARKERS; NIVOLUMAB; BLOCKADE; SURVIVAL; ASSAY;
D O I
10.1016/j.prp.2022.154233
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Background: Ample evidence supports the potential of programmed death-ligand 1 (PD-L1) expression, detected by immunohistochemistry, as a predictive biomarker for immunotherapy in patients with advanced cancers. To predict the response to immune checkpoint inhibitors in patients with gastric and urothelial carcinomas, we aimed to replace PD-L1 combined positive score (CPS) with CD274 mRNA in the original four-gene signature and PD-L1 CPS model developed by us.Method: We used quantitative real-time polymerase chain reaction (qRT-PCR) to measure the expression levels of five target genes in a cohort of 49 patients (33 with gastric cancer and 16 with urothelial carcinoma) who had received immunotherapy and whose therapeutic responses were available. The predictive performance was evaluated using R package maxstat.Results: Cutoff values of mRNA expression level were measured using the log-rank statistics for progression-free survival (PFS). Based on these cutoffs, immunotherapy responses were predicted and sorted into responder (n = 12, 24.5%) and non-responder (n = 37, 75.5%) groups. The median PFS values of predicted responders and non -responders were 14.8 months (95% confidence interval [CI]: 0-34.7) and 4.7 months (95% CI: 1.0-8.4, p = 0.02), respectively. Among the 12 predicted responders, 10 had microsatellite-stable tumors with a low tumor mutational burden. The actual clinical responses (complete and partial) were higher in the responder group than those in the non-responder group: 83.3% and 16.2%, respectively.Conclusion: We modified a predictive biomarker for CD274 mRNA expression to predict the response to immu-notherapy in patients with gastric or urothelial carcinomas.
引用
收藏
页数:8
相关论文
共 34 条
[1]   PD-L1 expression in gastric cancer: interchangeability of 22C3 and 28-8 pharmDx assays for responses to immunotherapy [J].
Ahn, Soomin ;
Kim, Kyoung-Mee .
MODERN PATHOLOGY, 2021, 34 (09) :1719-1727
[2]   Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma [J].
Auslander, Noam ;
Zhang, Gao ;
Lee, Joo Sang ;
Frederick, Dennie T. ;
Miao, Benchun ;
Moll, Tabea ;
Tian, Tian ;
Wei, Zhi ;
Madan, Sanna ;
Sullivan, Ryan J. ;
Boland, Genevieve ;
Flaherty, Keith ;
Herlyn, Meenhard ;
Ruppin, Eytan .
NATURE MEDICINE, 2018, 24 (10) :1545-+
[3]   Predictive biomarkers for cancer immunotherapy with immune checkpoint inhibitors [J].
Bai, Rilan ;
Lv, Zheng ;
Xu, Dongsheng ;
Cui, Jiuwei .
BIOMARKER RESEARCH, 2020, 8 (01)
[4]   PD-L1 Expression as a Predictive Biomarker Is Absence of Proof the Same as Proof of Absence? [J].
Bhaijee, Feriyl ;
Anders, Robert A. .
JAMA ONCOLOGY, 2016, 2 (01) :54-55
[5]   Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer [J].
Borghaei, H. ;
Paz-Ares, L. ;
Horn, L. ;
Spigel, D. R. ;
Steins, M. ;
Ready, N. E. ;
Chow, L. Q. ;
Vokes, E. E. ;
Felip, E. ;
Holgado, E. ;
Barlesi, F. ;
Kohlhaeufl, M. ;
Arrieta, O. ;
Burgio, M. A. ;
Fayette, J. ;
Lena, H. ;
Poddubskaya, E. ;
Gerber, D. E. ;
Gettinger, S. N. ;
Rudin, C. M. ;
Rizvi, N. ;
Crino, L. ;
Blumenschein, G. R. ;
Antonia, S. J. ;
Dorange, C. ;
Harbison, C. T. ;
Finckenstein, F. Graf ;
Brahmer, J. R. .
NEW ENGLAND JOURNAL OF MEDICINE, 2015, 373 (17) :1627-1639
[6]   Next generation sequencing of PD-L1 for predicting response to immune checkpoint inhibitors [J].
Conroy, Jeffrey M. ;
Pabla, Sarabjot ;
Nesline, Mary K. ;
Glenn, Sean T. ;
Papanicolau-Sengos, Antonios ;
Burgher, Blake ;
Andreas, Jonathan ;
Giamo, Vincent ;
Wang, Yirong ;
Lenzo, Felicia L. ;
Bshara, Wiam ;
Khalil, Maya ;
Dy, Grace K. ;
Madden, Katherine G. ;
Shirai, Keisuke ;
Dragnev, Konstantin ;
Tafe, Laura J. ;
Zhu, Jason ;
Labriola, Matthew ;
Marin, Daniele ;
McCall, Shannon J. ;
Clarke, Jeffrey ;
George, Daniel J. ;
Zhang, Tian ;
Zibelman, Matthew ;
Ghatalia, Pooja ;
Araujo-Fernandez, Isabel ;
de la Cruz-Merino, Luis ;
Singavi, Arun ;
George, Ben ;
MacKinnon, Alexander C. ;
Thompson, Jonathan ;
Singh, Rajbir ;
Jacob, Robin ;
Kasuganti, Deepa ;
Shah, Neel ;
Day, Roger ;
Galluzzi, Lorenzo ;
Gardner, Mark ;
Morrison, Carl .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2019, 7
[7]   Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy [J].
Cristescu, Razvan ;
Mogg, Robin ;
Ayers, Mark ;
Albright, Andrew ;
Murphy, Erin ;
Yearley, Jennifer ;
Sher, Xinwei ;
Liu, Xiao Qiao ;
Lu, Hongchao ;
Nebozhyn, Michael ;
Zhang, Chunsheng ;
Lunceford, Jared ;
Joe, Andrew ;
Cheng, Jonathan ;
Webber, Andrea L. ;
Ibrahim, Nageatte ;
Plimack, Elizabeth R. ;
Ott, Patrick A. ;
Seiwert, Tanguy ;
Ribas, Antoni ;
McClanahan, Terrill K. ;
Tomassini, Joanne E. ;
Loboda, Andrey ;
Kaufman, David .
SCIENCE, 2018, 362 (6411) :197-+
[8]   Combination Therapy with Anti-CTLA-4 and Anti-PD-1 Leads to Distinct Immunologic Changes In Vivo [J].
Das, Rituparna ;
Verma, Rakesh ;
Sznol, Mario ;
Boddupalli, Chandra Sekhar ;
Gettinger, Scott N. ;
Kluger, Harriet ;
Callahan, Margaret ;
Wolchok, Jedd D. ;
Halaban, Ruth ;
Dhodapkar, Madhav V. ;
Dhodapkar, Kavita M. .
JOURNAL OF IMMUNOLOGY, 2015, 194 (03) :950-959
[9]   Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells [J].
Dave, SS ;
Wright, G ;
Tan, B ;
Rosenwald, A ;
Gascoyne, RD ;
Chan, WC ;
Fisher, RI ;
Braziel, RM ;
Rimsza, LM ;
Grogan, TM ;
Miller, TP ;
LeBlanc, M ;
Greiner, TC ;
Weisenburger, DD ;
Lynch, JC ;
Vose, J ;
Armitage, JO ;
Smeland, EB ;
Kvaloy, S ;
Holte, H ;
Delabie, J ;
Connors, JM ;
Lansdorp, PM ;
Ouyang, Q ;
Lister, TA ;
Davies, AJ ;
Norton, AJ ;
Muller-Hermelink, HK ;
Ott, G ;
Campo, E ;
Montserrat, E ;
Wilson, WH ;
Jaffe, ES ;
Simon, R ;
Yang, LM ;
Powell, J ;
Zhao, H ;
Goldschmidt, N ;
Chiorazzi, M ;
Staudt, LM .
NEW ENGLAND JOURNAL OF MEDICINE, 2004, 351 (21) :2159-2169
[10]   Database of Genomic Biomarkers for Cancer Drugs and Clinical Targetability in Solid Tumors [J].
Dienstmann, Rodrigo ;
Jang, In Sock ;
Bot, Brian ;
Friend, Stephen ;
Guinney, Justin .
CANCER DISCOVERY, 2015, 5 (02) :118-123