Crises and chaotic transients of a tristable magnetoelastic oscillator

被引:0
|
作者
Chen, J. [1 ,2 ]
Han, H. [1 ,2 ]
Jiang, W. [1 ]
Chen, L. [3 ,4 ]
Bi, Q. [1 ]
机构
[1] Jiangsu Univ, Fac Civil Engn & Mech, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Changzhou Univ, Sch Mech Engn, Changzhou 213164, Peoples R China
[3] Shanghai Univ, Sch Mech & Engn Sci, Shanghai 200072, Peoples R China
[4] Harbin Inst Technol, Sch Sci, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Tristable; Global analysis; Magnetoelastic; Bifurcation; DUFFING OSCILLATOR; BIFURCATION-ANALYSIS; CELL; DYNAMICS;
D O I
10.1007/s12648-022-02501-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we focus on the global dynamical analysis of a tristable magnetoelastic nonlinear oscillator. The bifurcation diagrams of the excitation amplitude and the excitation frequency are determined by numerical integration, and the largest Lyapunov exponents are carried out by using Wolf's method. Global properties of the systems are emphasized by adopting the generalized cell mapping method. Attractors, saddles, basins of attraction, basin boundaries, and invariant manifolds are plotted. As the excitation amplitude and the excitation frequency increase, the chaotic transients are recorded, and the boundary crises are observed. Furthermore, the validity and rationality of the results from the generalized cell mapping method are verified via directly numerical integration.
引用
收藏
页码:1533 / 1541
页数:9
相关论文
共 50 条
  • [21] Contrasting Chaotic and Stochastic Forcing: Tipping Windows and Attractor Crises
    Ashwin, Peter
    Newman, Julian
    Romer, Raphael
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2025, 24 (01): : 277 - 316
  • [22] Bifurcation analysis and chaotic behavior of a discrete-time delayed genetic oscillator model
    Liu, Feng
    Yin, Xiang
    Sun, Fenglan
    Wang, Xinmei
    Wang, Hua O.
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [23] Effect of amplitude modulated signal on chaotic motions in a mixed Rayleigh-Lienard oscillator
    Miwadinou, C. H.
    Monwanou, A. V.
    Hinvi, L. A.
    Orou, J. B. Chabi
    CHAOS SOLITONS & FRACTALS, 2018, 113 : 89 - 101
  • [24] A Chaotic Quadratic Oscillator with Only Squared Terms: Multistability, Impulsive Control, and Circuit Design
    Veeman, Dhinakaran
    Alanezi, Ahmad
    Natiq, Hayder
    Jafari, Sajad
    Abd El-Latif, Ahmed A.
    SYMMETRY-BASEL, 2022, 14 (02):
  • [26] Antimonotonicity and multistability in a fractional order memristive chaotic oscillator
    Chen, Chao-Yang
    Rajagopal, Karthikeyan
    Hamarash, Ibrahim Ismael
    Nazarimehr, Fahimeh
    Alsaadi, Fawaz E.
    Hayat, Tasawar
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2019, 228 (10) : 1969 - 1981
  • [27] Study on Radar Signal Detection Using Chaotic Oscillator
    Sun Qing
    Tao Jianfeng
    Sun Yong
    PROCEEDINGS OF THE SECOND INTERNATIONAL SYMPOSIUM ON TEST AUTOMATION & INSTRUMENTATION, VOL. 3, 2008, : 1236 - 1240
  • [28] A Conservative Chaotic Oscillator: Dynamical Analysis and Circuit Implementation
    Parthasarathy, Sriram
    Natiq, Hayder
    Rajagopal, Karthikeyan
    Zavareh, Mahdi Nourian
    Nazarimehr, Fahimeh
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (03):
  • [29] Coexisting attractors in a memcapacitor-based chaotic oscillator
    Yuan, Fang
    Wang, Guangyi
    Shen, Yiran
    Wang, Xiaoyuan
    NONLINEAR DYNAMICS, 2016, 86 (01) : 37 - 50
  • [30] Smooth Nonlinearity Generation with lnCosh and Realization of Chaotic Oscillator
    Shukla, Garima
    Paul, Sajal K.
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2023, 32 (08)