The Ito integral and near-martingales in Riesz spaces

被引:0
作者
Divandar, Mahin Sadat [1 ]
Sadeghi, Ghadir [1 ,2 ]
机构
[1] Hakim Sabzevari Univ, Dept Math & Comp Sci, POB 397, Sabzevar, Iran
[2] Ferdowsi Univ Mashhad, Ctr Excellence Anal Algebra Struct CEAAS, Mashhad, Razavi Khorasan, Iran
关键词
Ito integral; near-martingale; Brownian motion; Riesz space; instantly independent; BROWNIAN-MOTION; CONVERGENCE; THEOREM;
D O I
10.1080/03610926.2021.2003401
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new class of the Ito integral for Brownian motion is defined and studied in the framework of Riesz spaces. The stochastic process with respect to this stochastic integral is non-adapted and it is a motivitation to construct near-martingales in Riesz spaces. Furthermore, we state Doob-Meyer decomposition theorem for near-submartingales in Riesz spaces.
引用
收藏
页码:5068 / 5081
页数:14
相关论文
共 32 条
[1]  
Aliprantis C., 1985, POSITIVE OPERATOR
[2]  
Ayed W., 2008, Communications on Stochastic Analysis, V2, P323, DOI [10.31390/cosa.2. 3.05, DOI 10.31390/COSA.2.3.05]
[3]  
Ayed W., 2010, Theory of Stochastic Processes, V16, P17
[4]   PRICING OF OPTIONS AND CORPORATE LIABILITIES [J].
BLACK, F ;
SCHOLES, M .
JOURNAL OF POLITICAL ECONOMY, 1973, 81 (03) :637-654
[5]   ANTICIPATIVE GIRSANOV TRANSFORMATIONS [J].
BUCKDAHN, R .
PROBABILITY THEORY AND RELATED FIELDS, 1991, 89 (02) :211-238
[6]   A MARTINGALE CONVERGENCE THEOREM IN VECTOR LATTICES [J].
DEMARR, R .
CANADIAN JOURNAL OF MATHEMATICS, 1966, 18 (02) :424-&
[7]  
Dorogovtsev A.A., 1990, ITO VOLTERRA EQUATIO, P41
[8]   The Kolmogorov-Centsov theorem and Brownian motion in vector lattices (vol 410, pg 891, 2014) [J].
Grobler, J. J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 420 (01) :878-878
[9]   The Kolmogorov-Centsov theorem and Brownian motion in vector lattices [J].
Grobler, J. J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 410 (02) :891-901
[10]   Doob's optional sampling theorem in Riesz spaces [J].
Grobler, J. J. .
POSITIVITY, 2011, 15 (04) :617-637