3D-Printed Chitosan-Based Scaffolds with Scutellariae baicalensis Extract for Dental Applications

被引:7
作者
Paczkowska-Walendowska, Magdalena [1 ]
Koumentakou, Ioanna [2 ]
Lazaridou, Maria [2 ]
Bikiaris, Dimitrios [2 ]
Miklaszewski, Andrzej [3 ]
Plech, Tomasz [4 ]
Cielecka-Piontek, Judyta [1 ,5 ]
机构
[1] Poznan Univ Med Sci, Dept Pharmacognosy & Biomat, PL-60806 Poznan, Poland
[2] Aristotle Univ Thessaloniki, Dept Chem, Lab Polymer Chem & Technol, Thessaloniki 54124, Greece
[3] Poznan Univ Tech, Inst Mat Sci & Engn, Fac Mech Engn & Management, PL-61138 Poznan, Poland
[4] Med Univ Lublin, Dept Pharmacol, PL-20080 Lublin, Poland
[5] Inst Nat Fibres & Med Plants, Dept Pharmacol & Phytochem, PL-60630 Poznan, Poland
关键词
3D printing; chitosan; gelatin; Scutellariae baicalensis extract; IN-VITRO; HYDROGEL;
D O I
10.3390/pharmaceutics16030359
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The plant material Scutellariae baicalensis radix, which is rich in flavones (baicalin), possesses antibacterial, antifungal, antioxidant, and anti-inflammatory properties. This work aimed to develop a 3D-printed chitosan-based hydrogel rich in Scutellariae baicalensis extract as an innovative approach for the personalized treatment of periodontal diseases. Chitosan-based hydrogels were prepared, and the printability of the prepared hydrogels was determined. The hydrogel with 2.5% w/v of high molecular-weight chitosan (CS), 2% w/v gelatin (Gel), and 10% w/w of extract (Ex) presented the best printability, producing smooth and uniform scaffolds. It was proved that the CS/Gel/Ex hydrogel was stabilized by hydrogen bonds and remained in amorphous dispersion in the 3D-printed structures (confirmed by ATR-FTIR and XRPD). Due to the amorphization of the active substance, a significant increase in the release of baicalin in vitro was observed. It was demonstrated that there was an initial burst release and a continuous release profile (n = 3). Higuchi kinetic was the most likely baicalin release kinetic. The second fit, the Korsmeyer-Peppas kinetics model, showed coupled diffusion of the active ingredient in the hydrated matrix and polymer relaxation regulated release, with n values ranging from 0.45 to 0.89. The anti-inflammatory properties of 3D-printed scaffolds were assessed as the ability to inhibit the activity of the hyaluronidase enzyme. Activity was assessed as IC50 = 63.57 +/- 4.98 mg hydrogel/mL (n = 6). Cytotoxicity tests demonstrated the biocompatibility of the material. After 24 h of exposure to the 2.5CS/2Gel/10Ex scaffold, fibroblasts migrated toward the scratch, closed the "wound" by 97.1%, and significantly accelerated the wound healing process. The results render the 3D-printed CS/Gel/extract scaffolds as potential candidates for treating periodontal diseases.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] 3D-Printed Gelatin Methacryloyl-Based Scaffolds with Potential Application in Tissue Engineering
    Leu Alexa, Rebeca
    Iovu, Horia
    Ghitman, Jana
    Serafim, Andrada
    Stavarache, Cristina
    Marin, Maria-Minodora
    Ianchis, Raluca
    POLYMERS, 2021, 13 (05) : 1 - 17
  • [42] A 3D-Printed Bone Scaffold of Carboxymethyl Chitosan/Gelatin/Akermanite: Synthesis and Evaluation
    Mamaghani, Elsa
    Azami, Mahmoud
    Nikkhoo, Mohammad
    JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2025, 33 (03) : 1374 - 1388
  • [43] Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds
    Serra, Tiziano
    Ortiz-Hernandez, Monica
    Engel, Elisabeth
    Planell, Josep A.
    Navarro, Melba
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2014, 38 : 55 - 62
  • [44] Fabrication and characterization of 3D-printed bone-like β-tricalcium phosphate/polycaprolactone scaffolds for dental tissue engineering
    Park, JiSun
    Lee, Sang Jin
    Jo, Ha Hyeon
    Lee, Jun Hee
    Kim, Wan Doo
    Lee, Jae Young
    Park, Su A.
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2017, 46 : 175 - 181
  • [45] Investigation of 3D-printed chitosan-xanthan gum patches
    Altan, Eray
    Turker, Nurgul
    Hindy, Osama Ali
    Dirican, Zeynep
    Ozakpinar, Ozlem Bingol
    Demir, Aysegul Uzuner
    Kalaskar, Deepak
    Thakur, Sourbh
    Gunduz, Oguzhan
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 213 : 259 - 267
  • [46] 3D Bioprinted Chitosan-Based Hydrogel Scaffolds in Tissue Engineering and Localised Drug Delivery
    Lazaridou, Maria
    Bikiaris, Dimitrios N.
    Lamprou, Dimitrios A.
    PHARMACEUTICS, 2022, 14 (09)
  • [47] Elastolytic-sensitive 3D-printed chitosan scaffold for wound healing applications
    Ovidio Catanzano
    Lisa Elviri
    Carlo Bergonzi
    Annalisa Bianchera
    Ruggero Bettini
    Antonella Bandiera
    MRS Communications, 2021, 11 : 924 - 930
  • [48] 3D-printed cellulose nanocrystals and gelatin scaffolds with bioactive cues for regenerative medicine: Advancing biomedical applications
    Singh, Prerna
    Baniasadi, Hossein
    Gupta, Sneha
    Ghosh, Rupita
    Shaikh, Shazia
    Seppala, Jukka
    Kumar, Ashok
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 278
  • [49] Elastolytic-sensitive 3D-printed chitosan scaffold for wound healing applications
    Catanzano, Ovidio
    Elviri, Lisa
    Bergonzi, Carlo
    Bianchera, Annalisa
    Bettini, Ruggero
    Bandiera, Antonella
    MRS COMMUNICATIONS, 2021, 11 (06) : 924 - 930
  • [50] 3D-printed polycaprolactone-chitosan based drug delivery implants for personalized administration
    Yang, Yutong
    Wu, Haichao
    Fu, Qiliang
    Xie, Xinfeng
    Song, Yongming
    Xu, Min
    Li, Jian
    MATERIALS & DESIGN, 2022, 214