Finite energy solutions for nonlinear elliptic equations with competing gradient, singular and L1 terms

被引:7
作者
Balducci, Francesco [1 ]
Oliva, Francescantonio [1 ]
Petitta, Francesco [1 ]
机构
[1] Sapienza Univ Roma, Dipartimento Sci Base & Applicate Ingn, Via Scarpa 16, I-00161 Rome, Italy
关键词
1-Laplacian; p-Laplacian; Natural growth gradient terms; Regularizing effects; L-1; data; Singular problems; DIRICHLET PROBLEM; 1-LAPLACIAN EQUATION; BOUNDED SOLUTIONS; EXISTENCE;
D O I
10.1016/j.jde.2024.02.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we deal with the following boundary value problem {-Delta(p)u + g(u)vertical bar del u vertical bar(p) = h(u)f in Omega, u >= 0 in Omega, u = 0 on partial derivative Omega, in a domain Omega subset of R-N (N >= 2), where 1 <= p < N, g is a positive and continuous function on [0, infinity), and his a continuous function on [0, infinity) (possibly blowing up at the origin). We show how the presence of regularizing terms h and g allows to prove existence of finite energy solutions for nonnegative data f only belonging to L-1(Omega). (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:334 / 369
页数:36
相关论文
共 29 条
[1]  
Ambrosio L., 2005, ANN FAC SCI TOULOUSE, V14, P527
[2]  
Ambrosio L., 2000, OX MATH M, pxviii
[3]   The Dirichlet problem for the total variation flow [J].
Andreu, F ;
Ballester, C ;
Caselles, V ;
Mazón, JM .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 180 (02) :347-403
[4]   Bounded solutions to the 1-Laplacian equation with a critical gradient term [J].
Andreu, Fuensanta ;
Dall'Aglio, Andrea ;
de Leon, Sergio Segura .
ASYMPTOTIC ANALYSIS, 2012, 80 (1-2) :21-43
[5]  
[Anonymous], 2004, Progress in Mathematics
[6]  
[Anonymous], 1995, ANN SCUOLA NORM SUP
[7]  
ANZELLOTTI G, 1983, ANN MAT PUR APPL, V135, P294
[8]  
BENSOUSSAN A, 1988, ANN I H POINCARE-AN, V5, P347
[9]   EXISTENCE OF BOUNDED SOLUTIONS FOR NON-LINEAR ELLIPTIC UNILATERAL PROBLEMS [J].
BOCCARDO, L ;
MURAT, F ;
PUEL, JP .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1988, 152 :183-196
[10]   Semilinear elliptic equations with singular nonlinearities [J].
Boccardo, Lucio ;
Orsina, Luigi .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 37 (3-4) :363-380