A high-order space-time spectral method for the distributed-order time-fractional telegraph equation

被引:3
作者
Derakhshan, M. H. [1 ]
Kumar, Pushpendra [2 ,3 ]
Salahshour, Soheil [3 ,4 ,5 ]
机构
[1] Apadana Inst Higher Educ, Dept Ind Engn, Shiraz, Iran
[2] Near East Univ TRNC, Math Res Ctr, Mersin 10, TR-99138 Nicosia, Turkiye
[3] Istanbul Okan Univ, Fac Engn & Nat Sci, Istanbul, Turkiye
[4] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkiye
[5] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon
关键词
Spectral scheme; Distributed-order fractional operator; Legendre function; Stability and convergence; DIFFERENTIAL-EQUATIONS; DIFFUSION; DISPERSION; SCHEMES;
D O I
10.1007/s40435-024-01408-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a high-order and fast numerical method based on the space-time spectral scheme is obtained for solving the space-time fractional telegraph equation. In the proposed method, for discretization of temporal and spatial variables, we consider two cases. We use the Legendre functions for discretization in time. To obtain the full discrete numerical approach, we use a Fourier-like orthogonal function. The convergence and stability analysis for the presented numerical approach is studied and analyzed. Some numerical examples are given for the effectiveness of the numerical approach.
引用
收藏
页码:2778 / 2794
页数:17
相关论文
共 49 条
[1]   A space-time spectral method for time-fractional Black-Scholes equation [J].
An, Xingyu ;
Liu, Fawang ;
Zheng, Minling ;
Anh, Vo V. ;
Turner, Ian W. .
APPLIED NUMERICAL MATHEMATICS, 2021, 165 :152-166
[2]   Time-space fractional Euler-Poisson-Darboux equation with Bessel fractional derivative in infinite and finite domains [J].
Ansari, Alireza ;
Derakhshan, Mohammad Hossein .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 218 :383-402
[3]   Distributed order fractional diffusion equation with fractional Laplacian in axisymmetric cylindrical configuration [J].
Ansari, Alireza ;
Derakhshan, Mohammad Hossein ;
Askari, Hassan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 113
[4]  
Askey R., 1975, ORTHOGONAL POLYNOMIA, DOI [10.1137/1.9781611970470, DOI 10.1137/1.9781611970470]
[5]   Fractional dispersion, Levy motion, and the MADE tracer tests [J].
Benson, DA ;
Schumer, R ;
Meerschaert, MM ;
Wheatcraft, SW .
TRANSPORT IN POROUS MEDIA, 2001, 42 (1-2) :211-240
[6]  
Bhatter S., 2024, INT J MATH COMPUT EN, V2, P97, DOI [10.2478/ijmce-2024-0008, DOI 10.2478/IJMCE-2024-0008]
[7]   New spectral techniques for systems of fractional differential equations using fractional-order generalized Laguerre orthogonal functions [J].
Bhrawy, Ali H. ;
Alhamed, Yahia A. ;
Baleanu, Dumitru ;
Al-Zahrani, Abdulrahim A. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (04) :1137-1157
[8]   Finite Difference/Finite Element Methods for Distributed-Order Time Fractional Diffusion Equations [J].
Bu, Weiping ;
Xiao, Aiguo ;
Zeng, Wei .
JOURNAL OF SCIENTIFIC COMPUTING, 2017, 72 (01) :422-441
[9]   Differentiation to fractional orders and the fractional telegraph equation [J].
Camargo, R. Figueiredo ;
Chiacchio, Ary O. ;
de Oliveira, E. Capelas .
JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (03)
[10]  
Canuto C., 2006, SCIENTIF COMPUT, DOI [10.1007/978-3-540-30726-6, 10.1007/978-3-540-30728-0]