Physiological Mechanisms of Dietary Salt Sensing in the Brain, Kidney, and Gastrointestinal Tract

被引:4
|
作者
Stocker, Sean D. [1 ,2 ]
Kinsman, Brian J. [3 ]
Farquhar, William B. [4 ]
Gyarmati, Georgina [5 ]
Peti-Peterdi, Janos [5 ]
Sved, Alan F. [6 ]
机构
[1] Univ Pittsburgh, Dept Neurobiol, Sch Med, 200 Lothrop St E1455,Biomed Sci Tower, Pittsburgh, PA 15261 USA
[2] Univ Pittsburgh, Dept Neurobiol, Sch Med, Pittsburgh, PA 15261 USA
[3] Massachusetts Gen Hosp, Dept Anesthesia Crit Care & Pain Med, Boston, MA USA
[4] Univ Delaware, Dept Kinesiol & Appl Physiol, Newark, DE USA
[5] Univ Southern Calif, Zilkha Neurogenet Inst, Dept Physiol & Neurosci & Med, Los Angeles, CA 90033 USA
[6] Univ Pittsburgh, Dept Neurosci, Pittsburgh, PA USA
基金
美国国家卫生研究院;
关键词
angiotensin II; cardiovascular diseases; NaCl; renal; sodium; MACULA DENSA; ANTEROVENTRAL; 3RD-VENTRICLE; SENSITIVE HYPERTENSION; SUBFORNICAL ORGAN; BLOOD-PRESSURE; SODIUM-CHANNELS; NA+ CHANNELS; HIGH-NACL; VASOPRESSIN; RESPONSES;
D O I
10.1161/HYPERTENSIONAHA.123.19488
中图分类号
R6 [外科学];
学科分类号
1002 ; 100210 ;
摘要
Excess dietary salt (NaCl) intake is strongly correlated with cardiovascular disease and is a major contributing factor to the pathogenesis of hypertension. NaCl-sensitive hypertension is a multisystem disorder that involves renal dysfunction, vascular abnormalities, and neurogenically-mediated increases in peripheral resistance. Despite a major research focus on organ systems and these effector mechanisms causing NaCl-induced increases in arterial blood pressure, relatively less research has been directed at elucidating how NaCl is sensed by various tissues to elicit these downstream effects. The purpose of this review is to discuss how the brain, kidney, and gastrointestinal tract sense NaCl including key cell types, the role of NaCl versus osmolality, and the underlying molecular and electrochemical mechanisms.
引用
收藏
页码:447 / 455
页数:9
相关论文
共 50 条
  • [2] Metabolism of dietary quercetin in the gastrointestinal tract, liver and kidney of the rat.
    Graf, BA
    Milbury, PE
    Ameho, C
    Dolnikowski, GG
    Blumberg, JB
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U59 - U59
  • [3] Functional properties of dietary fiber. Mechanisms of actions in the gastrointestinal tract
    Lopez, G
    Ros, G
    Rincon, F
    Periago, MJ
    Martinez, C
    Ortuno, J
    ARCHIVOS LATINOAMERICANOS DE NUTRICION, 1997, 47 (03) : 203 - 207
  • [4] Nutrient sensing in the gastrointestinal tract
    Alpers, David H.
    CURRENT OPINION IN GASTROENTEROLOGY, 2010, 26 (02) : 134 - 139
  • [5] Causal Relationship between Physiological and Pathological Processes in the Brain and in the Gastrointestinal Tract: The Brain–Intestine Axis
    Reutov V.P.
    Sorokina E.G.
    Biophysics, 2022, 67 (6) : 972 - 986
  • [6] Sensing of glucose in the gastrointestinal tract
    Raybould, Helen E.
    AUTONOMIC NEUROSCIENCE-BASIC & CLINICAL, 2007, 133 (01): : 86 - 90
  • [7] The gut-brain axis and pain signalling mechanisms in the gastrointestinal tract
    Meerschaert, Kimberly A.
    Chiu, Isaac M.
    NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2025, 22 (03) : 206 - 221
  • [8] First evidence for the presence of amino acid sensing mechanisms in the fish gastrointestinal tract
    Jessica Calo
    Ayelén M. Blanco
    Sara Comesaña
    Marta Conde-Sieira
    Sofia Morais
    José L. Soengas
    Scientific Reports, 11
  • [9] First evidence for the presence of amino acid sensing mechanisms in the fish gastrointestinal tract
    Calo, Jessica
    Blanco, Ayelen M.
    Comesana, Sara
    Conde-Sieira, Marta
    Morais, Sofia
    Soengas, Jose L.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [10] SPHINCTER MECHANISMS IN GASTROINTESTINAL TRACT
    EDWARDS, DAW
    AMERICAN JOURNAL OF DIGESTIVE DISEASES, 1967, 12 (03): : 267 - &