Two-Stage Spatio-Temporal Feature Correlation Network for Infrared Ground Target Tracking

被引:0
作者
Li, Shaoyi [1 ]
Fu, Guodong [2 ]
Yang, Xi [1 ]
Cao, Xiqing [3 ]
Niu, Saisai [3 ]
Meng, Zhongjie [1 ]
机构
[1] Northwestern Polytech Univ, Sch Astronaut, Xian 710072, Shaanxi, Peoples R China
[2] Tianjin Jinhang Inst Tech Phys, Tianjin 300192, Peoples R China
[3] Shanghai Aerosp Control Technol Inst, Shanghai 201109, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
基金
中国国家自然科学基金;
关键词
Target tracking; Correlation; Feature extraction; Trajectory; Training; Robustness; Electronic mail; Anti-occlusion; infrared ground target; optical flow; spatio-temporal context; target tracking; OBJECT TRACKING;
D O I
10.1109/TGRS.2023.3349282
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Similar target distractor and background occlusion in the complex ground environment can result in infrared target tracking drift or even failure. To solve this problem, this study proposes an infrared ground target tracker based on a two-stage spatio-temporal feature correlation network. First, a spatio-temporal context fusion feature correlation network (Scffcnet) is proposed, which fuses appearance features and spatio-temporal context information, and improves the stable tracking ability of the tracker under similar target distractor conditions. Second, a unidirectional trajectory feature correlation network (UTFCNet) is proposed, which ensures the accurate prediction of ground target trajectories by effectively using the temporal context information and optimizing training and application methods. Finally, a two-stage anti-occlusion strategy of "occlusion-prediction-recapture" is proposed, which improves the anti-long-term occlusion performance of the tracker. Qualitative and quantitative experiments on image sequences under similar target distractor and background occlusion conditions verify the effectiveness of the proposed tracker.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 59 条
  • [1] Berg A., 2015, PROC 12 IEEE INT C, P1
  • [2] Fully-Convolutional Siamese Networks for Object Tracking
    Bertinetto, Luca
    Valmadre, Jack
    Henriques, Joao F.
    Vedaldi, Andrea
    Torr, Philip H. S.
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 : 850 - 865
  • [3] Bhat Goutam, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12368), P205, DOI 10.1007/978-3-030-58592-1_13
  • [4] Learning Discriminative Model Prediction for Tracking
    Bhat, Goutam
    Danelljan, Martin
    Van Gool, Luc
    Timofte, Radu
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 6181 - 6190
  • [5] TCTrack: Temporal Contexts for Aerial Tracking
    Cao, Ziang
    Huang, Ziyuan
    Pan, Liang
    Zhang, Shiwei
    Liu, Ziwei
    Fu, Changhong
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 14778 - 14788
  • [6] Siamese Box Adaptive Network for Visual Tracking
    Chen, Zedu
    Zhong, Bineng
    Li, Guorong
    Zhang, Shengping
    Ji, Rongrong
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 6667 - 6676
  • [7] Collins R., 2005, IEEE INT WORKSH PERF, P17
  • [8] MixFormer: End-to-End Tracking with Iterative Mixed Attention
    Cui, Yutao
    Jiang, Cheng
    Wang, Limin
    Wu, Gangshan
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 13598 - 13608
  • [9] Probabilistic Regression for Visual Tracking
    Danelljan, Martin
    Van Gool, Luc
    Timofte, Radu
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 7181 - 7190
  • [10] ATOM: Accurate Tracking by Overlap Maximization
    Danelljan, Martin
    Bhat, Goutam
    Khan, Fahad Shahbaz
    Felsberg, Michael
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 4655 - 4664