Direct aerosol optical depth retrievals using MODIS reflectance data and machine learning over East Asia

被引:6
作者
Kang, Eunjin [1 ]
Park, Seonyoung [2 ]
Kim, Miae [3 ]
Yoo, Cheolhee [4 ]
Im, Jungho [1 ,5 ]
Song, Chang-Keun [1 ,5 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Dept Urban & Environm Engn, Ulsan, South Korea
[2] Seoul Natl Univ Sci & Technol, Dept Appl Artificial Intelligence, Seoul, South Korea
[3] APEC Climate Ctr APCC, Predict Res Dept Climate Serv & Res Div, Pusan, South Korea
[4] Hong Kong Polytech Univ, Dept Land Surveying & Geoinformat, Kowloon, Hong Kong, Peoples R China
[5] Ulsan Natl Inst Sci & Technol, Res & Management Ctr Particulate Matters Southeast, Ulsan, South Korea
基金
新加坡国家研究基金会;
关键词
AIR-POLLUTION; DARK TARGET; VALIDATION; ALGORITHM; PRODUCTS; LAND; CLIMATE; GOCI; IMPLEMENTATION; SATELLITE;
D O I
10.1016/j.atmosenv.2023.119951
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Anthropogenic aerosols have rapidly increased since the industrial revolution and are harmful to human health. Moderate Resolution Imaging Spectroradiometer (MODIS) data are critical for retrieving aerosol properties worldwide. However, current MODIS aerosol optical depth (AOD) products require extensive computations and a precalculated lookup table. This study proposes assumption-free high-resolution AOD retrieval models based on the light gradient boosting machine method using MODIS data and ground-based observations over East Asia. The models were developed with three spatial resolutions: 250 m, 500 m, and 1 km. The results showed that 77.8% of the 250 m AOD values were within the MODIS expected error (EE) range, while 76.5%, 76.3%, and 70.08% of the 500 m, 1 km, and Multi Angle Implementation of Atmospheric Correction (MAIAC) AOD values were within the EE range, respectively. Furthermore, an analysis of the time series and detailed spatial distribution of the proposed model-derived AOD based on data from the Korea-United States Air Quality campaign demonstrated the excellent quality of the 250 m AOD via further validation using a spatially independent dataset. The Shapley Additive exPlanations analysis identified the sensor zenith angle and top-of-atmosphere reflectance of the blue band as the key contributors to the models. In addition, while MAIAC has limited spatial coverage, the spatial frequency of the proposed direct AOD retrieval was nearly 1.5-times higher than that of the MAIAC AOD. Our findings confirmed that machine learning-based high-resolution AOD estimates can be obtained using only satellite data.
引用
收藏
页数:15
相关论文
共 86 条
[1]   Health effects of air pollution [J].
Bernstein, JA ;
Alexis, N ;
Barnes, C ;
Bernstein, IL ;
Bernstein, JA ;
Nel, A ;
Peden, D ;
Diaz-Sanchez, D ;
Tarlo, SM ;
Williams, PB .
JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2004, 114 (05) :1116-1123
[2]   Intercomparison of MOD'S, MISR, OMI, and CALIPSO aerosol optical depth retrievals for four locations on the Indo-Gangetic plains and validation against AERONET data [J].
Bibi, Humera ;
Alam, Khan ;
Chishtie, Farrukh ;
Bibi, Samina ;
Shahid, Imran ;
Blaschke, Thomas .
ATMOSPHERIC ENVIRONMENT, 2015, 111 :113-126
[3]   Evaluation of MODIS aerosol retrieval algorithms over the Beijing-Tianjin-Hebei region during low to very high pollution events [J].
Bilal, Muhammad ;
Nichol, Janet E. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2015, 120 (15) :7941-7957
[4]   Climate-specific and global validation of MODIS Aqua and Terra aerosol optical depth at 452 AERONET stations [J].
Bright, Jamie M. ;
Gueymard, Christian A. .
SOLAR ENERGY, 2019, 183 :594-605
[5]   Analysis of Visible/SWIR surface reflectance ratios for aerosol retrievals from satellite in Mexico City urban area [J].
Castanho, A. D. de Almeida ;
Prinn, R. ;
Martins, V. ;
Herold, M. ;
Ichoku, C. ;
Molina, L. T. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (20) :5467-5477
[6]   Instrument calibration and aerosol optical depth validation of the China Aerosol Remote Sensing Network [J].
Che, Huizheng ;
Zhang, Xiaoye ;
Chen, Hongbin ;
Damiri, Bahaiddin ;
Goloub, Philippe ;
Li, Zhengqiang ;
Zhang, Xiaochun ;
Wei, Yao ;
Zhou, Huaigang ;
Dong, Fan ;
Li, Deping ;
Zhou, Tianming .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2009, 114
[7]   Full-coverage 250 m monthly aerosol optical depth dataset (2000-2019) amended with environmental covariates by an ensemble machine learning model over arid and semi-arid areas, NW China [J].
Chen, Xiangyue ;
Zuo, Hongchao ;
Zhang, Zipeng ;
Cao, Xiaoyi ;
Duan, Jikai ;
Zhu, Chuanmei ;
Zhang, Zhe ;
Wang, Jingzhe .
EARTH SYSTEM SCIENCE DATA, 2022, 14 (12) :5233-5252
[8]   Joint retrieval of the aerosol fine mode fraction and optical depth using MODIS spectral reflectance over northern and eastern China: Artificial neural network method [J].
Chen, Xingfeng ;
de Leeuw, Gerrit ;
Arola, Antti ;
Liu, Shumin ;
Liu, Yang ;
Li, Zhengqiang ;
Zhang, Kainan .
REMOTE SENSING OF ENVIRONMENT, 2020, 249
[9]   Validation, comparison, and integration of GOCI, AHI, MODIS, MISR, and VIIRS aerosol optical depth over East Asia during the 2016 KORUS-AQ campaign [J].
Choi, Myungje ;
Lim, Hyunkwang ;
Kim, Jhoon ;
Lee, Seoyoung ;
Eck, Thomas F. ;
Holben, Brent N. ;
Garay, Michael J. ;
Hyer, Edward J. ;
Saide, Pablo E. ;
Liu, Hongqing .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2019, 12 (08) :4619-4641
[10]   GOCI Yonsei aerosol retrieval version 2 products: an improved algorithm and error analysis with uncertainty estimation from 5-year validation over East Asia [J].
Choi, Myungje ;
Kim, Jhoon ;
Lee, Jaehwa ;
Kim, Mijin ;
Park, Young-Je ;
Holben, Brent ;
Eck, Thomas F. ;
Li, Zhengqiang ;
Song, Chul H. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2018, 11 (01) :385-408