Laser-free trapped ion entangling gates with AESE: adiabatic elimination of spin-motion entanglement

被引:3
作者
Sutherland, R. Tyler [1 ,2 ]
Foss-Feig, Michael [1 ]
机构
[1] Quantinuum, 303 S Technol Ct, Broomfield, CO 80021 USA
[2] Univ Texas San Antonio, Dept Elect & Comp Engn, San Antonio, TX 78249 USA
来源
NEW JOURNAL OF PHYSICS | 2024年 / 26卷 / 01期
关键词
trapped ions; quantum computing; gates; two qubit gate; laser-free; quantum control; entanglement; QUANTUM LOGIC GATES; COMPUTER;
D O I
10.1088/1367-2630/ad19f9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss a laser-free, two-qubit geometric phase gate technique for generating high-fidelity entanglement between two trapped ions. The scheme works by ramping the spin-dependent force on and off slowly relative to the gate detunings, which adiabatically eliminates the spin-motion entanglement (AESE). We show how gates performed with AESE can eliminate spin-motion entanglement with multiple modes simultaneously, without having to specifically tune the control field detunings. This is because the spin-motion entanglement is suppressed by operating the control fields in a certain parametric limit, rather than by engineering an optimized control sequence. We also discuss physical implementations that use either electronic or ferromagnetic magnetic field gradients. In the latter, we show how to 'AESE' the system by smoothly turning on the effective spin-dependent force by shelving from a magnetic field insensitive state to a magnetic field sensitive state slowly relative to the gate mode frequencies. We show how to do this with a Rabi or adiabatic rapid passage transition. Finally, we show how gating with AESE significantly decreases the gate's sensitivity to common sources of motional decoherence, making it easier to perform high-fidelity gates at Doppler temperatures.
引用
收藏
页数:14
相关论文
共 50 条
[1]   Pulsed dynamical decoupling for fast and robust two-qubit gates on trapped ions [J].
Arrazola, I. ;
Casanova, J. ;
Pedernales, J. S. ;
Wang, Z. -Y. ;
Solano, E. ;
Plenio, M. B. .
PHYSICAL REVIEW A, 2018, 97 (05)
[2]   Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits [J].
Ballance, C. J. ;
Harty, T. P. ;
Linke, N. M. ;
Sepiol, M. A. ;
Lucas, D. M. .
PHYSICAL REVIEW LETTERS, 2016, 117 (06)
[3]  
Barthel P, 2022, Arxiv, DOI arXiv:2208.00187
[4]   Entangled states of trapped atomic ions [J].
Blatt, Rainer ;
Wineland, David .
NATURE, 2008, 453 (7198) :1008-1015
[5]   Trapped-ion quantum computing: Progress and challenges [J].
Bruzewicz, Colin D. ;
Chiaverini, John ;
McConnell, Robert ;
Sage, Jeremy M. .
APPLIED PHYSICS REVIEWS, 2019, 6 (02)
[6]   Entangling ions in arrays of microscopic traps [J].
Calarco, T ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW A, 2001, 63 (06) :16-062304
[7]   Roads towards fault-tolerant universal quantum computation [J].
Campbell, Earl T. ;
Terhal, Barbara M. ;
Vuillot, Christophe .
NATURE, 2017, 549 (7671) :172-179
[8]   QUANTUM COMPUTATIONS WITH COLD TRAPPED IONS [J].
CIRAC, JI ;
ZOLLER, P .
PHYSICAL REVIEW LETTERS, 1995, 74 (20) :4091-4094
[9]   A scalable quantum computer with ions in an array of microtraps [J].
Cirac, JI ;
Zoller, P .
NATURE, 2000, 404 (6778) :579-581
[10]   High-Fidelity Bell-State Preparation with 40Ca+ Optical Qubits [J].
Clark, Craig R. ;
Tinkey, Holly N. ;
Sawyer, Brian C. ;
Meier, Adam M. ;
Burkhardt, Karl A. ;
Seck, Christopher M. ;
Shappert, Christopher M. ;
Guise, Nicholas D. ;
Volin, Curtis E. ;
Fallek, Spencer D. ;
Hayden, Harley T. ;
Rellergert, Wade G. ;
Brown, Kenton R. .
PHYSICAL REVIEW LETTERS, 2021, 127 (13)