Integrative Physiological and Transcriptome Analysis Reveals the Mechanism of Cd Tolerance in Sinapis alba

被引:0
|
作者
Cai, Mengxian [1 ]
Yang, Tinghai [1 ]
Fang, Shiting [1 ]
Ye, Lvlan [1 ]
Gu, Lei [1 ]
Wang, Hongcheng [1 ]
Du, Xuye [1 ]
Zhu, Bin [1 ]
Zeng, Tuo [1 ]
Peng, Tao [1 ]
Shen, Xinjie
机构
[1] Guizhou Normal Univ, Sch Life Sci, Guiyang 550025, Peoples R China
关键词
Sinapis alba; transcriptome; Cd stress; physiological response; CADMIUM TOLERANCE; ENZYME; PLANTS;
D O I
10.3390/genes14122224
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Recently, pollution caused by the heavy metal Cd has seriously affected the environment and agricultural crops. While Sinapis alba is known for its edible and medicinal value, its tolerance to Cd and molecular response mechanism remain unknown. This study aimed to analyze the tolerance of S. alba to Cd and investigate its molecular response mechanism through transcriptomic and physiological indicators. To achieve this, S. alba seedlings were treated with different concentrations of CdCl2 (0.25 mmol/L, 0.5 mmol/L, and 1.0 mmol/L) for three days. Based on seedling performance, S. alba exhibited some tolerance to a low concentration of Cd stress (0.25 mmol/L CdCl2) and a strong Cd accumulation ability in its roots. The activities and contents of several antioxidant enzymes generally exhibited an increase under the treatment of 0.25 mmol/L CdCl2 but decreased under the treatment of higher CdCl2 concentrations. In particular, the proline (Pro) content was extremely elevated under the 0.25 and 0.5 mmol/L CdCl2 treatments but sharply declined under the 1.0 mmol/L CdCl2 treatment, suggesting that Pro is involved in the tolerance of S. alba to low concentration of Cd stress. In addition, RNA sequencing was utilized to analyze the gene expression profiles of S. alba exposed to Cd (under the treatment of 0.25 mmol/L CdCl2). The results indicate that roots were more susceptible to disturbance from Cd stress, as evidenced by the detection of 542 differentially expressed genes (DEGs) in roots compared to only 37 DEGs in leaves. GO and KEGG analyses found that the DEGs induced by Cd stress were primarily enriched in metabolic pathways, plant hormone signal transduction, and the biosynthesis of secondary metabolites. The key pathway hub genes were mainly associated with intracellular ion transport and cell wall synthesis. These findings suggest that S. alba is tolerant to a degree of Cd stress, but is also susceptible to the toxic effects of Cd. Furthermore, these results provide a theoretical basis for understanding Cd tolerance in S. alba.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Physiological and comprehensive transcriptome analysis reveals distinct regulatory mechanisms for aluminum tolerance of Trifolium repens
    Nie, Gang
    Huang, Yizhi
    Wang, Yang
    He, Jie
    Zhang, Rui
    Yan, Lijun
    Huang, Linkai
    Zhang, Xinquan
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2024, 284
  • [22] Comparative Physiological and Transcriptome Analysis of Crossostephium chinense Reveals Its Molecular Mechanisms of Salt Tolerance
    Wang, Yuxin
    Liu, Miao
    Guo, Ziyu
    Liang, Yilin
    Lu, Yufan
    Xu, Yuxian
    Sun, Ming
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (23)
  • [23] Integrated transcriptome and metabolome analysis reveals the mechanism of tolerance to manganese and cadmium toxicity in the Mn/Cd hyperaccumulator Celosia argentea Linn
    Yu, Guo
    Ullah, Habib
    Wang, Xinshuai
    Liu, Jie
    Chen, Baoliang
    Jiang, Pingping
    Lin, Hua
    Sunahara, Geoffrey I.
    You, Shaohong
    Zhang, Xuehong
    Shahab, Asfandyar
    JOURNAL OF HAZARDOUS MATERIALS, 2023, 443
  • [24] Integrative physiological and transcriptome analysis unravels the mechanism of low nitrogen use efficiency in burley tobacco
    Feng, Yuqing
    Zhao, Yuanyuan
    Ma, Yanjun
    Chen, Xiaolong
    Shi, Hongzhi
    PLANT DIRECT, 2024, 8 (10)
  • [25] Integrative analysis of the metabolome and transcriptome reveals seed germination mechanism in Punica granatum L.
    FU Fang-fang
    PENG Ying-shu
    WANG Gui-bin
    Yousry A.EL-KASSABY
    CAO Fu-liang
    Journal of Integrative Agriculture, 2021, 20 (01) : 132 - 146
  • [26] Integrative analysis of the metabolome and transcriptome reveals seed germination mechanism in Punica granatum L.
    Fu Fang-fang
    Peng Ying-shu
    Wang Gui-bin
    El-Kassaby, Yousry A.
    Cao Fu-liang
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2021, 20 (01) : 132 - 146
  • [27] Integrative analysis of the metabolome and transcriptome reveals the molecular mechanism of chlorogenic acid synthesis in peach fruit
    Su, Ziwen
    Jia, Haoran
    Sun, Meng
    Cai, Zhixiang
    Shen, Zhijun
    Zhao, Bintao
    Li, Jiyao
    Ma, Ruijuan
    Yu, Mingliang
    Yan, Juan
    FRONTIERS IN NUTRITION, 2022, 9
  • [28] Integrative Analysis of Metabolome and Transcriptome Reveals the Mechanism of Color Formation in Yellow-Fleshed Kiwifruit
    Xiong, Yun
    He, Junya
    Li, Mingzhang
    Du, Kui
    Lang, Hangyu
    Gao, Ping
    Xie, Yue
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (02)
  • [29] Integrative transcriptome and metabolome analysis reveals the mechanism of fulvic acid alleviating drought stress in oat
    Zhu, Shanshan
    Mi, Junzhen
    Zhao, Baoping
    Wang, Zhaoming
    Yang, Zhixue
    Wang, Mengxin
    Liu, Jinghui
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [30] Integrative Analysis of the Methylome, Transcriptome, and Proteome Reveals a New Mechanism of Rapeseed Under Freezing Stress
    Zheng, Guoqiang
    Liu, Zigang
    Wang, Jinxiong
    Wei, Jiaping
    Dong, Xiaoyun
    Li, Hui
    Wang, Ying
    Tian, Haiyang
    Wu, Zefeng
    Cui, Junmei
    AGRONOMY-BASEL, 2025, 15 (03):