Spectrum of 3-uniform 6-and 9-cycle systems over Kv(3) - I

被引:0
|
作者
Keszler, Anita [1 ]
Tuza, Zsolt [2 ,3 ]
机构
[1] Inst Comp Sci & Control SZTAK, Machine Percept Res Lab, Kende U 13-17, H-1111 Budapest, Hungary
[2] Alfred Reny Inst Math, Realtanoda U 13-15, H-1053 Budapest, Hungary
[3] Univ Pannonia, Dept Comp Sci & Syst Technol, Egyet U 10, H-8200 Veszprem, Hungary
关键词
Hypergraph; Edge decomposition; Tight cycle; Hypercycle system; Steiner system; CYCLE DECOMPOSITIONS; HYPERGRAPHS;
D O I
10.1016/j.disc.2023.113782
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider edge decompositions of K-v((3)) - I, the complete 3-uniform hypergraph of order v minus a set of v/3 mutually disjoint edges (1-factor). We prove that a decomposition into tight 6-cycles exists if and only if v equivalent to 0, 3, 6 (mod 12) and v >= 6; and a decomposition into tight 9-cycles exists for all v >= 9 divisible by 3. These results are complementary to the theorems of Akin et al. [Discrete Math. 345 (2022)] and Bunge et al. [Australas. J. Combin. 80 (2021)] who settled the case of K-v((3)).(c) 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons .org /licenses/by-nc-nd/4.0/).
引用
收藏
页数:10
相关论文
共 10 条
  • [1] On tight 9-cycle decompositions of complete 3-uniform hypergraphs
    Bunge, Ryan C.
    Darrow, Brian D., Jr.
    El-Zanati, Saad, I
    Hadaway, Kimberly P.
    Pryor, Megan K.
    Romer, Alexander J.
    Squires, Alexandra
    Stover, Anna C.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2021, 80 : 233 - 240
  • [2] Tight 9-Cycle Decompositions of λ-Fold Complete 3-Uniform Hypergraphs
    Zhao, Hongtao
    Gu, Jianxiao
    MATHEMATICS, 2024, 12 (19)
  • [3] On tight 6-cycle decompositions of complete 3-uniform hypergraphs
    Akin, Matthew
    Bunge, Ryan C.
    El-Zanati, Saad, I
    Hamilton, Joshua
    Kolle, Brittany
    Lehmann, Sabrina
    Neiburger, Levi
    DISCRETE MATHEMATICS, 2022, 345 (02)
  • [4] Hypercycle Systems of 5-Cycles in Complete 3-Uniform Hypergraphs
    Keszler, Anita
    Tuza, Zsolt
    MATHEMATICS, 2021, 9 (05) : 1 - 59
  • [5] Cycle Decompositions in 3-Uniform Hypergraphs
    Simón Piga
    Nicolás Sanhueza-Matamala
    Combinatorica, 2023, 43 : 1 - 36
  • [6] Cycle Decompositions in 3-Uniform Hypergraphs
    Piga, Simon
    Sanhueza-Matamala, Nicolas
    COMBINATORICA, 2023, 43 (01) : 1 - 36
  • [7] Saturation for the 3-uniform loose 3-cycle
    English, Sean
    Kostochka, Alexandr
    Zirlin, Dara
    DISCRETE MATHEMATICS, 2023, 346 (11)
  • [8] Codegree conditions for cycle decompositions and Euler tours in 3-uniform hypergraphs
    Piga, Simon
    Sanhueza-Matamala, Nicolas
    PROCEEDINGS OF THE XI LATIN AND AMERICAN ALGORITHMS, GRAPHS AND OPTIMIZATION SYMPOSIUM, 2021, 195 : 350 - 358
  • [9] The minimum vertex degree for an almost-spanning tight cycle in a 3-uniform hypergraph
    Cooley, Oliver
    Mycroft, Richard
    DISCRETE MATHEMATICS, 2017, 340 (06) : 1172 - 1179
  • [10] The minimum chromatic spectrum of 3-uniform C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{C}$$\end{document}-hypergraphs
    Ruixue Zhang
    Ping Zhao
    Kefeng Diao
    Fuliang Lu
    Journal of Combinatorial Optimization, 2015, 29 (4) : 796 - 802