Compact Bergman Type Operators

被引:0
作者
Ding, Lijia [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Bergman kernel; Compact operator; Dimension; Dixmier trace; Schatten class; Macaev class; TOEPLITZ-OPERATORS; PROJECTIONS;
D O I
10.1007/s11785-023-01419-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize the L-p-L-q compactness of Bergman type operators, which are singular integral operators induced by the modified Bergman kernel on the complex unit ball. Moreover, we characterize Schatten class and Macaev class Bergman type integral operators on the Lebesgue space and the Bergman space by the methods of spectral estimates and operator inequalities; we also give a relatively intrinsic characterization by introducing a concept of dimension of a compact operator. The Dixmier trace of Bergman type operators is also calculated.
引用
收藏
页数:33
相关论文
共 27 条
  • [1] Adams A., 2003, Sobolev Spaces, Pure and Applied Mathematics
  • [2] Toeplitz operators on Arveson and Dirichlet spaces
    Alpay, Daniel
    Kaptanoglu, H. Turgay
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2007, 58 (01) : 1 - 33
  • [3] Ando T., 1962, INDAG MATH NEW SER, V24, P235
  • [4] B~ekoll~e D., 1995, C MATH, V68, P81
  • [5] Lp-Lq Estimates for Bergman Projections in Bounded Symmetric Domains of Tube Type
    Bonami, Aline
    Garrigos, Gustavo
    Nana, Cyrille
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (04) : 1737 - 1769
  • [6] The Singular Integral Operator Induced by Drury-Arveson Kernel
    Cheng, Guozheng
    Hou, Xiaoyang
    Liu, Chao
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2018, 12 (04) : 917 - 929
  • [7] THE HYPER-SINGULAR COUSIN OF THE BERGMAN PROJECTION
    Cheng, Guozheng
    Fang, Xiang
    Wang, Zipeng
    Yu, Jiayang
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (12) : 8643 - 8662
  • [8] INTERPOLATION OF COMPACTNESS USING ARONSZAJN-GAGLIARDO FUNCTORS
    COBOS, F
    PEETRE, J
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1989, 68 (02) : 220 - 240
  • [9] Connes A, 1994, Noncommutative geometry
  • [10] Ding L., 2022, Adv. Math, V401, P1