Markov-Driven Graph Convolutional Networks for Social Spammer Detection

被引:14
|
作者
Deng, Leyan [1 ]
Wu, Chenwang [1 ]
Lian, Defu [2 ]
Wu, Yongji [3 ]
Chen, Enhong [2 ]
机构
[1] Univ Sci & Technol China, Sch Data Sci, Hefei 230000, Anhui, Peoples R China
[2] Univ Sci & Technol China, Sch Comp Sci & Technol, Anhui Prov Key Lab Big Data Anal & Applicat, Hefei 230000, Anhui, Peoples R China
[3] Duke Univ, Dept Comp Sci, Durham, NC 27706 USA
基金
中国国家自然科学基金;
关键词
Social networking (online); Feature extraction; Probability distribution; Blogs; Adaptation models; Markov random fields; Robustness; Spammer detection; graph convolutional networks;
D O I
10.1109/TKDE.2022.3150669
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the growing popularity of social media, malicious users (spammers) unfairly overpower legitimate users with unwanted or fake content to achieve their illegal purposes, which encourages research on spammer detection. The existing spammer detection methods can be characterized into feature-based detection and propagation-based detection. However, feature-based methods (e.g., GCN) cannot capture the user's following relations, while propagation-based methods cannot utilize the rich text features. To this end, we consider combining these two methods and propose an Adaptive Reward Markov Random Field (ARMRF) layer. ARMRF layer models three intuitions on user label relations and assign them different learnable rewards. Besides, we learn the reward weights by stacking the ARMRF layer on top of GCN for end-to-end training, and we call the stacked model ARMGCN. To further improve the expressive power of ARMGCN, we propose the Markov-Driven Graph Convolutional Network (MDGCN), which integrates conditional random fields (CRF) and ARMGCN. CRF establishes the label joint probability distribution conditioned features for learning user dependencies, and the distribution can be optimized by a variational EM algorithm. We extensively evaluate the proposed method on two real-world Twitter datasets, and the experimental results demonstrate that MDGCN outperforms the state-of-the-art baselines. In addition, the ARMRF layer is model-independent, so it can be integrated with existing advanced detection methods to improve detection performance further.
引用
收藏
页码:12310 / 12322
页数:13
相关论文
共 50 条
  • [21] Robust graph convolutional networks with directional graph adversarial training
    Hu, Weibo
    Chen, Chuan
    Chang, Yaomin
    Zheng, Zibin
    Du, Yunfei
    APPLIED INTELLIGENCE, 2021, 51 (11) : 7812 - 7826
  • [22] Fault detection in pipelines with graph convolutional networks (GCN) method
    Sahin, Ersin
    Yuce, Hueseyin
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2024, 40 (01): : 673 - 684
  • [23] HGDom: Heterogeneous Graph Convolutional Networks for Malicious Domain Detection
    Sun, Xiaoqing
    Yang, Jiahai
    Wang, Zhiliang
    Liu, Heng
    NOMS 2020 - PROCEEDINGS OF THE 2020 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM 2020: MANAGEMENT IN THE AGE OF SOFTWARIZATION AND ARTIFICIAL INTELLIGENCE, 2020,
  • [24] Fault Detection of Power Grid Using Graph Convolutional Networks
    Lei, Min
    Pan, Rongbo
    Han, Lei
    Shan, Peifa
    Zhao, Yaopeng
    Li, Yangyang
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND ARTIFICIAL INTELLIGENCE, PEAI 2024, 2024, : 256 - 260
  • [25] Graph Convolutional Networks With Syntactic and Semantic Structures for Event Detection
    Yang, Jing
    Gao, Hu
    Dang, Depeng
    IEEE ACCESS, 2024, 12 : 64949 - 64957
  • [26] Detection of rumor conversations in Twitter using graph convolutional networks
    Lotfi, Serveh
    Mirzarezaee, Mitra
    Hosseinzadeh, Mehdi
    Seydi, Vahid
    APPLIED INTELLIGENCE, 2021, 51 (07) : 4774 - 4787
  • [27] A novel approach for rumor detection in social platforms: Memory-augmented transformer with graph convolutional networks
    Chang, Qian
    Li, Xia
    Duan, Zhao
    KNOWLEDGE-BASED SYSTEMS, 2024, 292
  • [28] Robust Overlapping Community Detection in Complex Networks With Graph Convolutional Networks and Fuzzy C-Means
    Al-andoli, Mohammed Nasser
    Irianto
    AlSayaydeh, Jamil Abedalrahim
    Alwayle, Ibrahim M.
    Mohd, Che Ku Nuraini Che Ku
    Abuhoureyah, Fahd
    IEEE ACCESS, 2024, 12 : 70129 - 70145
  • [29] Graph Convolutional Networks for Road Networks
    Jepsen, Tobias Skovgaard
    Jensen, Christian S.
    Nielsen, Thomas Dyhre
    27TH ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS (ACM SIGSPATIAL GIS 2019), 2019, : 460 - 463
  • [30] A Novel Framework For Spammer Detection In Social Bookmarking Systems
    Gargari, Soghra M.
    Oguducu, Sule Gunduz
    2012 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), 2012, : 827 - 834