Parameter identification of multibody vehicle models using neural networks

被引:0
作者
Hobusch, Salim [1 ]
Nikelay, Ilker [1 ]
Nowakowski, Christine [1 ]
Woschke, Elmar [2 ]
机构
[1] Volkswagen Commercial Vehicles, Chassis Dev, Letterbox 1738, D-38436 Wolfsburg, Germany
[2] Otto von Guericke Univ, Inst Mech, Univ Pl 2, D-39106 Magdeburg, Germany
关键词
Parameter identification; Metamodel; Surrogate model; Neural networks; Kinematics and compliance; Multibody vehicle system; OPTIMIZATION; ALGORITHM; DYNAMICS;
D O I
10.1007/s11044-023-09950-4
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this study, a methodology for the identification of parameters of multibody vehicle models using neural networks is proposed. A neural network is trained based on the first parameter identification and then acts as a metamodel for all further parameter identifications. This approach is applied to two industrial examples in this study. The methodology is first used to identify the exact loading situation of a vehicle, taking into account the pitch characteristics and the normal force distribution of the wheels. Furthermore, the methodology is also used to identify the preload of suspension bushings for given kinematics and compliance test rig properties. Using the neural network as a metamodel for the parameter identification process, for both examples, the computational time can be significantly reduced from 4.5-6 hours to 1-3 minutes and thereby this methodology contributes to a more efficient virtual development process.
引用
收藏
页码:361 / 380
页数:20
相关论文
共 50 条
  • [41] Weight-Varying Neural Network for Parameter Identification of Automatic Vehicle
    Lei, Huang
    Shi Yikai
    Yuan Xiaoqing
    Wang, Danwei
    Ming, Yu
    2012 10TH IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2012, : 766 - 771
  • [42] Blood Cell Identification Using Emotional Neural Networks
    Khashman, Adnan
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2009, 25 (06) : 1737 - 1751
  • [43] Wave parameter estimation using neural networks
    Agrawal, JD
    Deo, MC
    MARINE STRUCTURES, 2004, 17 (07) : 536 - 550
  • [44] Longitudinal vehicle guidance using neural networks
    Tahirovic, A
    Konjicija, S
    Avdagic, Z
    Meier, G
    Wurmthaler, C
    2005 IEEE International Symposium on Computational Intelligence in Robotics and Automation, Proceedings, 2005, : 685 - 688
  • [45] Dynamic Parameter Identification for Reconfigurable Robot Using Adaline Neural Network
    Ge, Weimin
    Wang, Bingda
    Mu, Haozhi
    2019 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (ICMA), 2019, : 319 - 324
  • [46] Dynamics Parameter Identification of Torque Compensation Based on Neural Networks
    Zhang, Minglu
    Wang, Qing
    Liu, Xuan
    Li, Manhong
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2024, 57 (07): : 759 - 767
  • [47] Modeling and parameter identification of switched reluctance motors from operating data using neural networks
    Lu, WZ
    Keyhani, A
    Klode, H
    Proca, AB
    IEEE IEMDC'03: IEEE INTERNATIONAL ELECTRIC MACHINES AND DRIVES CONFERENCE, VOLS 1-3, 2003, : 1709 - 1713
  • [48] Substructural identification using neural networks
    Yun, CB
    Bahng, EY
    COMPUTERS & STRUCTURES, 2000, 77 (01) : 41 - 52
  • [49] A Geometric Algorithm for Robust Multibody Inertial Parameter Identification
    Lee, Taeyoon
    Park, Frank C.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (03): : 2455 - 2462
  • [50] Analog Gross Fault Identification in RF Circuits Using Neural Models and Constrained Parameter Extraction
    Viveros-Wacher, Andres
    Ernesto Rayas-Sanchez, Jose
    Brito-Brito, Zabdiel
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2019, 67 (06) : 2143 - 2150