Parameter identification of multibody vehicle models using neural networks

被引:0
作者
Hobusch, Salim [1 ]
Nikelay, Ilker [1 ]
Nowakowski, Christine [1 ]
Woschke, Elmar [2 ]
机构
[1] Volkswagen Commercial Vehicles, Chassis Dev, Letterbox 1738, D-38436 Wolfsburg, Germany
[2] Otto von Guericke Univ, Inst Mech, Univ Pl 2, D-39106 Magdeburg, Germany
关键词
Parameter identification; Metamodel; Surrogate model; Neural networks; Kinematics and compliance; Multibody vehicle system; OPTIMIZATION; ALGORITHM; DYNAMICS;
D O I
10.1007/s11044-023-09950-4
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this study, a methodology for the identification of parameters of multibody vehicle models using neural networks is proposed. A neural network is trained based on the first parameter identification and then acts as a metamodel for all further parameter identifications. This approach is applied to two industrial examples in this study. The methodology is first used to identify the exact loading situation of a vehicle, taking into account the pitch characteristics and the normal force distribution of the wheels. Furthermore, the methodology is also used to identify the preload of suspension bushings for given kinematics and compliance test rig properties. Using the neural network as a metamodel for the parameter identification process, for both examples, the computational time can be significantly reduced from 4.5-6 hours to 1-3 minutes and thereby this methodology contributes to a more efficient virtual development process.
引用
收藏
页码:361 / 380
页数:20
相关论文
共 50 条
  • [31] Neural network augmented identification of underwater vehicle models
    van de Ven, Pepijn W. J.
    Johansen, Tor A.
    Sorensen, Asgeir J.
    Flanagan, Colin
    Toal, Daniel
    CONTROL ENGINEERING PRACTICE, 2007, 15 (06) : 715 - 725
  • [32] Aquifer parameter estimation using genetic algorithms and neural networks
    Lingireddy, S
    CIVIL ENGINEERING AND ENVIRONMENTAL SYSTEMS, 1998, 15 (02) : 125 - 144
  • [33] Modeling of electric vehicle batteries using RBF neural networks
    Zhang, Cheng
    Yang, Zhile
    Li, Kang
    2014 INTERNATIONAL CONFERENCE ON COMPUTING, MANAGEMENT AND TELECOMMUNICATIONS (COMMANTEL), 2014, : 116 - 121
  • [34] Synchronization of neural networks based on parameter identification and via output or state coupling
    Lou, Xuyang
    Cui, Baotong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 222 (02) : 440 - 457
  • [35] Modelling and parameter identification of penicillin fermentation using physics-informed neural networks
    Zhao, Siqi
    Zhao, Zhonggai
    Liu, Fei
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2024,
  • [36] Simulation modeling of multi-parameter sensor signal identification using neural networks
    Turchenko, IV
    2004 2ND INTERNATIONAL IEEE CONFERENCE INTELLIGENT SYSTEMS, VOL 3, STUDENT SESSIONS, PROCEEDINGS, 2004, : 48 - 53
  • [37] Real-time identification of vehicle motion-modes using neural networks
    Wang, Lifu
    Zhang, Nong
    Du, Haiping
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2015, 50-51 : 632 - 645
  • [38] Fast covariance parameter estimation of spatial Gaussian process models using neural networks
    Gerber, Florian
    Nychka, Douglas
    STAT, 2021, 10 (01):
  • [39] Parameter Identification of RF Transceiver Blocks Using Regressive Models
    Khereddine, R.
    Simeu, E.
    Mir, S.
    IFAC WORKSHOP ON PROGRAMMABLE DEVICES AND EMBEDDED SYSTEMS (PDES 2009), PROCEEDINGS, 2009, : 67 - 72
  • [40] Using Numerical Models to Accelerate Electrolyte Transport Parameter Identification
    Ayerbe, E.
    Gutierrez, J. L.
    Varas, F.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (11)