Parameter identification of multibody vehicle models using neural networks

被引:0
|
作者
Hobusch, Salim [1 ]
Nikelay, Ilker [1 ]
Nowakowski, Christine [1 ]
Woschke, Elmar [2 ]
机构
[1] Volkswagen Commercial Vehicles, Chassis Dev, Letterbox 1738, D-38436 Wolfsburg, Germany
[2] Otto von Guericke Univ, Inst Mech, Univ Pl 2, D-39106 Magdeburg, Germany
关键词
Parameter identification; Metamodel; Surrogate model; Neural networks; Kinematics and compliance; Multibody vehicle system; OPTIMIZATION; ALGORITHM; DYNAMICS;
D O I
10.1007/s11044-023-09950-4
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this study, a methodology for the identification of parameters of multibody vehicle models using neural networks is proposed. A neural network is trained based on the first parameter identification and then acts as a metamodel for all further parameter identifications. This approach is applied to two industrial examples in this study. The methodology is first used to identify the exact loading situation of a vehicle, taking into account the pitch characteristics and the normal force distribution of the wheels. Furthermore, the methodology is also used to identify the preload of suspension bushings for given kinematics and compliance test rig properties. Using the neural network as a metamodel for the parameter identification process, for both examples, the computational time can be significantly reduced from 4.5-6 hours to 1-3 minutes and thereby this methodology contributes to a more efficient virtual development process.
引用
收藏
页码:361 / 380
页数:20
相关论文
共 50 条
  • [21] A frequency domain approach for parameter identification in multibody dynamics
    Stefan Oberpeilsteiner
    Thomas Lauss
    Wolfgang Steiner
    Karin Nachbagauer
    Multibody System Dynamics, 2018, 43 : 175 - 191
  • [22] Parameter Identification on Flexible Multibody Models Using the Adjoint Variable Method and Flexible Natural Coordinate Formulation
    Vanpaemel, Simon
    Naets, Frank
    Vermaut, Martijn
    Desmet, Wim
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2020, 15 (07):
  • [23] Employing automatic differentiation and neural networks for parameter identification of an energy based hysteresis model
    Museljic, Eniz
    Roppert, Klaus
    Domenig, Lukas Daniel
    Koestinger, Alice Reinbacher
    Kaltenbacher, Manfred
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2023, 73 (04) : 415 - 427
  • [24] Vehicle physical parameter identification based on an improved Harris hawks optimization and the transfer matrix method for multibody systems
    Zhang, Yin
    Ding, Jianguo
    Xie, Wenhao
    Chang, Yu
    Zhang, Xiangxiang
    Chen, Yumeng
    APPLIED INTELLIGENCE, 2023, 53 (02) : 2391 - 2409
  • [25] IDENTIFICATION OF MULTIVARIABLE NARMA MODELS USING ARTIFICIAL NEURAL NETWORKS
    Tlili, Brahim
    Bouani, Faouzi
    Ksouri, Mekki
    6TH INTERNATIONAL INDUSTRIAL SIMULATION CONFERENCE 2008, 2008, : 40 - 44
  • [26] Vehicle Lateral Dynamics-Inspired Hybrid Model Using Neural Network for Parameter Identification and Error Characterization
    Zhou, Zhisong
    Wang, Yafei
    Zhou, Guofeng
    Liu, Xulei
    Wu, Mingyu
    Dai, Kunpeng
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (11) : 16173 - 16186
  • [27] Terrain parameter identification for wheeled mobile robots using deep neural networks
    Bayat, Amir
    Azimi, Ali
    Taghvaeipour, Afshin
    MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES, 2024,
  • [28] A novel approach to parameter uncertainty analysis of hydrological models using neural networks
    Shrestha, D. L.
    Kayastha, N.
    Solomatine, D. P.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2009, 13 (07) : 1235 - 1248
  • [29] Using neural networks in the identification of Preisach-type hysteresis models
    Adly, AA
    Abd-El-Hafiz, SK
    IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (03) : 629 - 635
  • [30] Methods for inertial parameters identification of manipulator based on multibody dynamics and neural networks
    Cheng, Jun
    Wang, Ruiping
    Yu, Zhongjing
    Wu, Fang
    Kong, Shihan
    Shao, Jinyan
    Yu, Junzhi
    ADVANCES IN MECHANICAL ENGINEERING, 2025, 17 (02)