Parameter identification of multibody vehicle models using neural networks

被引:0
|
作者
Hobusch, Salim [1 ]
Nikelay, Ilker [1 ]
Nowakowski, Christine [1 ]
Woschke, Elmar [2 ]
机构
[1] Volkswagen Commercial Vehicles, Chassis Dev, Letterbox 1738, D-38436 Wolfsburg, Germany
[2] Otto von Guericke Univ, Inst Mech, Univ Pl 2, D-39106 Magdeburg, Germany
关键词
Parameter identification; Metamodel; Surrogate model; Neural networks; Kinematics and compliance; Multibody vehicle system; OPTIMIZATION; ALGORITHM; DYNAMICS;
D O I
10.1007/s11044-023-09950-4
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this study, a methodology for the identification of parameters of multibody vehicle models using neural networks is proposed. A neural network is trained based on the first parameter identification and then acts as a metamodel for all further parameter identifications. This approach is applied to two industrial examples in this study. The methodology is first used to identify the exact loading situation of a vehicle, taking into account the pitch characteristics and the normal force distribution of the wheels. Furthermore, the methodology is also used to identify the preload of suspension bushings for given kinematics and compliance test rig properties. Using the neural network as a metamodel for the parameter identification process, for both examples, the computational time can be significantly reduced from 4.5-6 hours to 1-3 minutes and thereby this methodology contributes to a more efficient virtual development process.
引用
收藏
页码:361 / 380
页数:20
相关论文
共 50 条
  • [1] Identification of multibody vehicle models for crash analysis using an optimization methodology
    Marta Carvalho
    Jorge Ambrósio
    Multibody System Dynamics, 2010, 24 : 325 - 345
  • [2] Identification of multibody vehicle models for crash analysis using an optimization methodology
    Carvalho, Marta
    Ambrosio, Jorge
    MULTIBODY SYSTEM DYNAMICS, 2010, 24 (03) : 325 - 345
  • [3] Application of Neural Networks to External Parameter Estimation for Nonlinear Vehicle Models
    Gräber T.
    Schäfer M.
    Unterreiner M.
    Schramm D.
    SAE International Journal of Connected and Automated Vehicles, 2021, 4 (03): : 297 - 312
  • [4] IDENTIFICATION OF OPTIMAL MULTIBODY VEHICLE MODELS FOR CRASH ANALYSIS
    Carvalho, Marta
    Ambrosio, Jorge
    JOURNAL OF THEORETICAL AND APPLIED MECHANICS, 2010, 48 (03) : 623 - 643
  • [5] Discretization of parameter identification in PDEs using neural networks
    Kaltenbacher, Barbara
    Nguyen, Tram Thi Ngoc
    INVERSE PROBLEMS, 2022, 38 (12)
  • [6] A method of vehicle classification using models and neural networks
    Wei, W
    Zhang, QS
    Wang, MJ
    IEEE VTC 53RD VEHICULAR TECHNOLOGY CONFERENCE, SPRING 2001, VOLS 1-4, PROCEEDINGS, 2001, : 3022 - 3026
  • [7] Identification of validated multibody vehicle models for crash analysis using a hybrid optimization procedure
    Carvalho, Marta
    Ambrosio, Jorge
    Eberhard, Peter
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2011, 44 (01) : 85 - 97
  • [8] Identification of validated multibody vehicle models for crash analysis using a hybrid optimization procedure
    Marta Carvalho
    Jorge Ambrósio
    Peter Eberhard
    Structural and Multidisciplinary Optimization, 2011, 44 : 85 - 97
  • [9] Parameter identification of a tumor model using artificial neural networks
    Puskas, Melania
    Drexler, Daniel Andras
    2021 IEEE 19TH WORLD SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS (SAMI 2021), 2021, : 443 - 447
  • [10] Identification of parameter coupling in turbine design using neural networks
    General Electric Corporate R&D, Cent, Schenectady, United States
    J Propul Power, 3 (503-508):