Brain Computer Interface Based on Motor Imagery for Mechanical Arm Grasp Control

被引:2
|
作者
Shi, Tian-Wei [1 ]
Chen, Ke-Jin [1 ]
Ren, Ling [2 ]
Cui, Wen-Hua [1 ]
机构
[1] Univ Sci & Technol Liaoning, Sch Comp Sci & Software Engn, Anshan 114051, Liaoning, Peoples R China
[2] Univ Sci & Technol Liaoning, Sch Innovat & Entrepreneurship, Anshan 114051, Peoples R China
来源
INFORMATION TECHNOLOGY AND CONTROL | 2023年 / 52卷 / 02期
基金
中国国家自然科学基金;
关键词
Brain Computer Interface; Motor Imagery; Convolutional Neural Network; Quaternary Classification; CLASSIFICATION; SYSTEM;
D O I
10.5755/j01.itc.52.2.32873
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper puts forward a brain computer interface (BCI) system to realize the hand and wrist control using the Asea Brown Boveri (ABB) Mechanical Arm. This BCI system gathers four kinds of motor imaginary (MI) tasks (hand grasp, hand spread, wrist flexion and wrist extension) electroencephalogram (EEG) signals from 30 electrodes. It utilizes two fifth-order Butterworth Band-Pass Filter (BPF) with different bandwidths and normalization method to achieve the raw MI tasks EEG signals preprocessing. The main challenge of feature extraction is to analyze the MI task intention from the preprocessed EEG signals. Therefore, the proposed BCI system extracts eleven kinds of features in time domain and time-frequency domain and uses mutual information method to reduce the large dimension of the extracted features. In addition, the BCI system applies a single convolutional layer Convolutional neural networks (CNN) with 30 filters to implement the quaternary classification of MI tasks. Compared with existing research, the classification accuracy of this BCI system is increased by about 32%-35%. The actual mechanical arm grasping control experiments verifies that this BCI system has good adaptability.
引用
收藏
页码:358 / 366
页数:9
相关论文
共 50 条
  • [21] Implementation of a brain-computer interface based on three states of motor imagery
    Wang, Yijun
    Hong, Bo
    Gao, Xiaorong
    Gao, Shangkai
    2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 5059 - 5062
  • [22] Electroencephalography-Based Brain-Computer Interface Motor Imagery Classification
    Mohammadi, Ehsan
    Daneshmand, Parisa Ghaderi
    Khorzooghi, Seyyed Mohammad Sadegh Moosavi
    JOURNAL OF MEDICAL SIGNALS & SENSORS, 2022, 12 (01): : 40 - 47
  • [23] Estimating the Hurst Exponent in Motor Imagery-based Brain Computer Interface
    Aldea, Roxana
    Tarniceriu, Daniela
    2013 7TH CONFERENCE ON SPEECH TECHNOLOGY AND HUMAN - COMPUTER DIALOGUE (SPED), 2013,
  • [24] Lateralization of EEG Patterns in Humans during Motor Imagery of Arm Movements in the Brain-Computer Interface
    Vasilyev, A. N.
    Liburkina, S. P.
    Kaplan, A. Ya.
    ZHURNAL VYSSHEI NERVNOI DEYATELNOSTI IMENI I P PAVLOVA, 2016, 66 (03) : 302 - 312
  • [25] Motor Imagery Brain-Computer Interface for RPAS Command and Control
    Arnaldo, Rosa
    Gomez Comendador, Fernando
    Perez, Luis
    Rodriguez, Alvaro
    ADVANCES IN HUMAN FACTORS AND SYSTEMS INTERACTION, 2018, 592 : 325 - 335
  • [26] BRAIN COMPUTER INTERFACE USING MOTOR IMAGERY AND FACIAL EXPRESSIONS TO CONTROL A MOBILE ROBOT
    Kuffuor, James
    Samanta, Biswanath
    PROCEEDINGS OF THE ASME 11TH ANNUAL DYNAMIC SYSTEMS AND CONTROL CONFERENCE, 2018, VOL 1, 2018,
  • [27] Brain Computer Interface Using Motor Imagery And Facial Expressions To Control A Mobile Robot
    Kuffuor, James
    Samanta, Biswanath
    IEEE SOUTHEASTCON 2018, 2018,
  • [28] Supervised penalty-based aggregation applied to motor-imagery based brain-computer-interface
    Fumanal-Idocin, J.
    Vidaurre, C.
    Fernandez, J.
    Gomez, M.
    Andreu-Perez, J.
    Prasad, M.
    Bustince, H.
    PATTERN RECOGNITION, 2024, 145
  • [29] Performance variation in motor imagery brain-computer interface: A brief review
    Ahn, Minkyu
    Jun, Sung Chan
    JOURNAL OF NEUROSCIENCE METHODS, 2015, 243 : 103 - 110
  • [30] EEG datasets for motor imagery brain-computer interface
    Cho, Hohyun
    Ahn, Minkyu
    Ahn, Sangtae
    Kwon, Moonyoung
    Jun, Sung Chan
    GIGASCIENCE, 2017, 6 (07): : 1 - 8