There is no reason to persist in the linear no-threshold (LNT) assumption

被引:1
|
作者
Boretti, Alberto [1 ]
机构
[1] Johnsonville Rd, Wellington 6037, New Zealand
关键词
ADAPTIVE RESPONSE; BACKGROUND-RADIATION; VERY-LOW; MODEL; EXPOSURE; RADIOBIOLOGY; US;
D O I
10.1016/j.jenvrad.2023.107239
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Ethical challenges of the linear non-threshold (LNT) cancer risk assessment revolution: History, insights, and lessons to be learned
    Calabrese, Edward J.
    Selby, Paul B.
    Giordano, James
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 832
  • [32] The downfall of the linear non-threshold model
    Suarez Fernandez, J. P.
    REVISTA ESPANOLA DE MEDICINA NUCLEAR E IMAGEN MOLECULAR, 2020, 39 (05): : 303 - 315
  • [33] Biological and cellular responses of humans to high-level natural radiation: A clarion call for a fresh perspective on the linear no-threshold paradigm
    Ghosh, Anu
    MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS, 2022, 878
  • [34] Radiation Dose Does Matter: Mechanistic Insights into DNA Damage and Repair Support the Linear No-Threshold Model of Low-Dose Radiation Health Risks
    Duncan, James R.
    Lieber, Michael R.
    Adachi, Noritaka
    Wahl, Richard L.
    JOURNAL OF NUCLEAR MEDICINE, 2018, 59 (07) : 1014 - 1016
  • [35] Quantum matchgate computations and linear threshold gates
    Van den Nest, Maarten
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2127): : 821 - 840
  • [36] Stability Threshold for Scalar Linear Periodic Delay Differential Equations
    Nah, Kyeongah
    Roest, Gergely
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (04): : 849 - 857
  • [37] Linear rotor in an ideal Bose gas near the threshold for binding
    Dome, Tibor
    Volosniev, Artem G.
    Ghazaryan, Areg
    Safari, Laleh
    Schmidt, Richard
    Lemeshko, Mikhail
    PHYSICAL REVIEW B, 2024, 109 (01)
  • [38] Permitted and forbidden sets in symmetric threshold-linear networks
    Hahnloser, RHR
    Seung, HS
    Slotine, JJ
    NEURAL COMPUTATION, 2003, 15 (03) : 621 - 638
  • [39] Control of Linear-Threshold Brain Networks via Reservoir Computing
    Mccreesh, Michael
    Cortes, Jorge
    IEEE OPEN JOURNAL OF CONTROL SYSTEMS, 2024, 3 : 325 - 341
  • [40] Enhanced numerical study of infinitesimal non-linear Cosserat theory based on the grain size length scale assumption
    Jeong, Jena
    Ramezani, Hamidreza
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (45-48) : 2892 - 2902