Near-infrared evolution of the equatorial ring of SN 1987A

被引:1
作者
Kangas, T. [1 ,2 ,3 ]
Ahola, A. [2 ]
Fransson, C. [4 ]
Larsson, J. [3 ]
Lundqvist, P. [4 ]
Mattila, S. [2 ,5 ]
Leibundgut, B. [6 ]
机构
[1] Univ Turku, Finnish Ctr Astron ESO FINCA, Turku 20014, Finland
[2] Univ Turku, Dept Phys & Astron, Tuorla Observ, Turku 20014, Finland
[3] KTH Royal Inst Technol, Oskar Klein Ctr, Dept Phys, AlbaNova, S-10691 Stockholm, Sweden
[4] Stockholm Univ, Oskar Klein Ctr, Dept Astron, AlbaNova, S-10691 Stockholm, Sweden
[5] European Univ Cyprus, Sch Sci, Diogenes St, CY-1516 Nicosia, Cyprus
[6] European Southern Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany
基金
瑞典研究理事会; 芬兰科学院;
关键词
supernovae; individual; SN; 1987A; ISM; supernova remnants; stars; mass-loss; INNER CIRCUMSTELLAR RING; SUPERNOVA; 1987A; LINE EMISSION; MAGNETIC-FIELD; RADIO REMNANT; X-RAY; EJECTA; DUST; SPECTROSCOPY; SHOCK;
D O I
10.1051/0004-6361/202245829
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We used adaptive optics imaging and integral field spectroscopy from the Very Large Telescope, together with images from the Hubble Space Telescope, to study the near-infrared (NIR) evolution of the equatorial ring (ER) of SN 1987A. We studied the NIR flux and morphology over time in order to lay the groundwork for James Webb Space Telescope observations of the system. We also studied the differences in the interacting ring structure and flux between optical, NIR, and other wavelengths, and between line and continuum emission, to constrain the underlying physical processes. For the most part, the evolution is similar in the NIR and optical. The morphology of the ER has been skewed toward the west side (with roughly two-thirds of the NIR emission originating there) since around 2010. A steady decline in the ER flux, broadly similar to the mid-infrared and the optical, has been ongoing since roughly this time as well. The expansion velocity of the ER hotspots in the NIR is fully consistent with the optical. However, continuum emission forms roughly 70% of the NIR luminosity, and has been stronger outside the hotspot-defined extent of the ER (relative to the hotspots themselves) than the optical emission or the NIR line emission since 2012-2013, suggesting a faster-expanding continuum component. We find that this outer NIR emission can have a significant synchrotron contribution. Even if emission from hot dust (2000 K) is dominant within the ER, the mass of this dust must be vanishingly small (a few times 10(-12) M-circle dot) compared to the total dust mass in the ER (greater than or similar to 10(-5) M-circle dot) to account for the observed HKs flux. The NIR continuum emission, however, expands more slowly than the more diffuse 180-K dust emission that dominates in the MIR, indicating a different source, and the same hot dust component cannot account for the J-band emission.
引用
收藏
页数:17
相关论文
共 59 条
[21]   Drizzle: A method for the linear reconstruction of undersampled images [J].
Fruchter, AS ;
Hook, RN .
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2002, 114 (792) :144-152
[22]   Time evolution of the line emission from the inner circumstellar ring of SN 1987A and its hot spots [J].
Groningsson, P. ;
Fransson, C. ;
Leibundgut, B. ;
Lundqvist, P. ;
Challis, P. ;
Chevalier, R. A. ;
Spyromilio, J. .
ASTRONOMY & ASTROPHYSICS, 2008, 492 (02) :481-U52
[23]   TEMPERATURE-FLUCTUATIONS IN INTERSTELLAR GRAINS .1. COMPUTATIONAL METHOD AND SUBLIMATION OF SMALL GRAINS [J].
GUHATHAKURTA, P ;
DRAINE, BT .
ASTROPHYSICAL JOURNAL, 1989, 345 (01) :230-244
[24]   DUST PRODUCTION AND PARTICLE ACCELERATION IN SUPERNOVA 1987A REVEALED WITH ALMA [J].
Indebetouw, R. ;
Matsuura, M. ;
Dwek, E. ;
Zanardo, G. ;
Barlow, M. J. ;
Baes, M. ;
Bouchet, P. ;
Burrows, D. N. ;
Chevalier, R. ;
Clayton, G. C. ;
Fransson, C. ;
Gaensler, B. ;
Kirshner, R. ;
Lakicevic, M. ;
Long, K. S. ;
Lundqvist, P. ;
Marti-Vidal, I. ;
Marcaide, J. ;
McCray, R. ;
Meixner, M. ;
Ng, C. -Y. ;
Park, S. ;
Sonneborn, G. ;
Staveley-Smith, L. ;
Vlahakis, C. ;
van Loon, J. .
ASTROPHYSICAL JOURNAL LETTERS, 2014, 782 (01)
[25]   The 44Ti-powered spectrum of SN 1987A [J].
Jerkstrand, A. ;
Fransson, C. ;
Kozma, C. .
ASTRONOMY & ASTROPHYSICS, 2011, 530
[26]   The morphology of the ejecta of SN 1987A at 31 yr from 1150 to 10 000 Å [J].
Kangas, T. ;
Fransson, C. ;
Larsson, J. ;
France, K. ;
Chevalier, R. A. ;
Kirshner, R. P. ;
Lundqvist, P. ;
Mattila, S. ;
Sollerman, J. ;
Utrobin, V. P. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 511 (02) :2977-2993
[27]   The 3-D structure of SN 1987A's inner ejecta [J].
Kjaer, K. ;
Leibundgut, B. ;
Fransson, C. ;
Jerkstrand, A. ;
Spyromilio, J. .
ASTRONOMY & ASTROPHYSICS, 2010, 517
[28]   Infrared integral field spectroscopy of SN 1987A [J].
Kjær, K. ;
Leibundgut, B. ;
Fransson, C. ;
Groningsson, P. ;
Spyromilio, J. ;
Kissler-Patig, M. .
ASTRONOMY & ASTROPHYSICS, 2007, 471 (02) :617-U84
[29]   JWST NIRSpec Observations of Supernova 1987A-From the Inner Ejecta to the Reverse Shock [J].
Larsson, J. ;
Fransson, C. ;
Sargent, B. ;
Jones, O. C. ;
Barlow, M. J. ;
Bouchet, P. ;
Meixner, M. ;
Blommaert, J. A. D. L. ;
Coulais, A. ;
Fox, O. D. ;
Gastaud, R. ;
Glasse, A. ;
Habel, N. ;
Hirschauer, A. S. ;
Hjorth, J. ;
Jaspers, J. ;
Kavanagh, P. J. ;
Krause, O. ;
Lau, R. M. ;
Lenkic, L. ;
Nayak, O. ;
Rest, A. ;
Temim, T. ;
Tikkanen, T. ;
Wesson, R. ;
Wright, G. S. .
ASTROPHYSICAL JOURNAL LETTERS, 2023, 949 (02)
[30]   The Matter Beyond the Ring: The Recent Evolution of SN 1987A Observed by the Hubble Space Telescope [J].
Larsson, J. ;
Fransson, C. ;
Alp, D. ;
Challis, P. ;
Chevalier, R. A. ;
France, K. ;
Kirshner, R. P. ;
Lawrence, S. ;
Leibundgut, B. ;
Lundqvist, P. ;
Mattila, S. ;
Migotto, K. ;
Sollerman, J. ;
Sonneborn, G. ;
Spyromilio, J. ;
Suntzeff, N. B. ;
Wheeler, J. C. .
ASTROPHYSICAL JOURNAL, 2019, 886 (02)