Mixed state behavior of Hermitian and non-Hermitian topological models with extended couplings

被引:0
|
作者
Kartik, Y. R. [1 ,2 ]
Sarkar, Sujit [1 ]
机构
[1] Poornaprajna Inst Sci Res, Theoret Sci Div, Bangalore 562164, India
[2] Manipal Acad Higher Educ, Grad Studies, Manipal 576104, India
来源
SCIENTIFIC REPORTS | 2023年 / 13卷 / 01期
关键词
PHASES; SYMMETRY;
D O I
10.1038/s41598-023-33449-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Geometric phase is an important tool to define the topology of the Hermitian and non-Hermitian systems. Besides, the range of coupling plays an important role in realizing higher topological indices and transition among them. With a motivation to understand the geometric phases for mixed states, we discuss finite temperature analysis of Hermitian and non-Hermitian topological models with extended range of couplings. To understand the geometric phases for the mixed states, we use Uhlmann phase and discuss the merit-limitation with respect extended range couplings. We extend the finite temperature analysis to non-Hermitian models and define topological invariant for different ranges of coupling. We include the non-Hermitian skin effect, and provide the derivation of topological invariant in the generalized Brillouin zone and their mixed state behavior also. We also adopt mixed geometric phases through interferometric approach, and discuss the geometric phases of extended-range (Hermitian and non-Hermitian) models at finite temperature.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Mixed state behavior of Hermitian and non-Hermitian topological models with extended couplings
    Y. R. Kartik
    Sujit Sarkar
    Scientific Reports, 13 (1)
  • [2] NON-HERMITIAN YUKAWA COUPLINGS
    BRANCO, GC
    SILVAMARCOS, JI
    PHYSICS LETTERS B, 1994, 331 (3-4) : 390 - 394
  • [3] Non-Hermitian Topology in Hermitian Topological Matter
    Hamanaka, Shu
    Yoshida, Tsuneya
    Kawabata, Kohei
    PHYSICAL REVIEW LETTERS, 2024, 133 (26)
  • [4] Evolution of topological extended state in multidimensional non-Hermitian topolectrical circuits
    Lin, Wei
    Ruan, Banxian
    Liu, Chao
    Dai, Xiaoyu
    Xiang, Yuanjiang
    APPLIED PHYSICS LETTERS, 2024, 125 (17)
  • [5] The topological counterparts of non-Hermitian SSH models
    Han, Y. Z.
    Liu, J. S.
    Liu, C. S.
    NEW JOURNAL OF PHYSICS, 2021, 23 (12):
  • [6] Non-Hermitian topological phases in an extended Kitaev model
    Maiellaro, A.
    Citro, R.
    10TH YOUNG RESEARCHER MEETING, 2020, 1548
  • [7] Non-Hermitian topological photonics
    Nasari, Hadiseh
    Pyrialakos, Georgios G.
    Christodoulides, Demetrios N.
    Khajavikhan, Mercedeh
    OPTICAL MATERIALS EXPRESS, 2023, 13 (04) : 870 - 885
  • [8] Non-Hermitian topological magnonics
    Yu, Tao
    Zou, Ji
    Zeng, Bowen
    Rao, J. W.
    Xia, Ke
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2024, 1062 : 1 - 86
  • [9] Non-Hermitian Topological Sensors
    Budich, Jan Carl
    Bergholtz, Emil J.
    PHYSICAL REVIEW LETTERS, 2020, 125 (18)
  • [10] Non-Hermitian topological ohmmeter
    Koenye, Viktor
    Ochkan, Kyrylo
    Chyzhykova, Anastasiia
    Budich, Jan Carl
    van den Brink, Jeroen
    Fulga, Ion Cosma
    Dufouleur, Joseph
    PHYSICAL REVIEW APPLIED, 2024, 22 (03):