Eigenvalue estimates for a class of elliptic differential operators in divergence form on Riemannian manifolds isometrically immersed in Euclidean space

被引:0
|
作者
Araujo Filho, Marcio C. [1 ]
Gomes, Jose N. V. [2 ]
机构
[1] Univ Fed Rondonia, Dept Matemat, Campus Ji Parana R Rio Amazonas 351, BR-76900726 Ji Parana, RO, Brazil
[2] Univ Fed Sao Carlos, Dept Matemat, Rod Washington Luiz,Km 235, BR-13565905 Sao Carlos, SP, Brazil
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2023年 / 74卷 / 04期
关键词
Eigenvalue estimates; Elliptic operator; Riemannian Manifold; Gaussian soliton; TRACE IDENTITIES; INEQUALITIES; LAPLACIAN; HYPERSURFACES; BOUNDS;
D O I
10.1007/s00033-023-02054-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain eigenvalue estimates for a larger class of elliptic differential operators in divergence form on a bounded domain in a complete Riemannian manifold isometrically immersed in Euclidean space. As an application, we give eigenvalue estimates in the Gaussian shrinking soliton, and we find a domain that makes the behavior of these estimates similar to the estimates for the case of the Laplacian. Moreover, we also give an answer to the generalized conjecture of Polya.
引用
收藏
页数:16
相关论文
共 19 条
  • [1] Eigenvalue estimates for a class of elliptic differential operators in divergence form on Riemannian manifolds isometrically immersed in Euclidean space
    Marcio C. Araújo Filho
    José N. V. Gomes
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [2] Inequalities for eigenvalues of operators in divergence form on Riemannian manifolds isometrically immersed in Euclidean space
    Silva, Cristiano S.
    Miranda, Juliana F. R.
    Filho, Marcio C. Araujo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (01)
  • [3] Eigenvalue estimates for a class of elliptic differential operators in divergence form
    Gomes, Jose N., V
    Miranda, Juliana F. R.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 176 : 1 - 19
  • [4] Eigenvalue estimates for a class of elliptic differential operators on compact manifolds
    Alencar, Hilario
    Neto, Gregorio Silva
    Zhou, Detang
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2015, 46 (03): : 491 - 514
  • [5] Inequalities for eigenvalues of elliptic operators in divergence form on Riemannian manifolds
    do Carmo, Manfredo P.
    Wang, Qiaoling
    Xia, Changyu
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2010, 189 (04) : 643 - 660
  • [6] Eigenvalue estimates for a class of elliptic differential operators on compact manifolds
    Alencar H.
    Neto G.S.
    Zhou D.
    Bulletin of the Brazilian Mathematical Society, New Series, 2015, 46 (3) : 491 - 514
  • [7] Extrinsic eigenvalue estimates of Dirac operators on Riemannian manifolds
    Huang, Guangyue
    Chen, Li
    Sun, Xiaomei
    MATHEMATISCHE NACHRICHTEN, 2011, 284 (2-3) : 273 - 286
  • [8] Estimates for Eigenvalues of the Elliptic Operator in Divergence Form on Riemannian Manifolds
    Tan, Shenyang
    Huang, Tiren
    Zhang, Wenbin
    ADVANCES IN MATHEMATICAL PHYSICS, 2015, 2015
  • [9] Inequalities for eigenvalues of elliptic operators in divergence form on Riemannian manifolds
    Manfredo P. do Carmo
    Qiaoling Wang
    Changyu Xia
    Annali di Matematica Pura ed Applicata, 2010, 189 : 643 - 660