Eigenvalue estimates for a class of elliptic differential operators in divergence form on Riemannian manifolds isometrically immersed in Euclidean space

被引:0
作者
Araujo Filho, Marcio C. [1 ]
Gomes, Jose N. V. [2 ]
机构
[1] Univ Fed Rondonia, Dept Matemat, Campus Ji Parana R Rio Amazonas 351, BR-76900726 Ji Parana, RO, Brazil
[2] Univ Fed Sao Carlos, Dept Matemat, Rod Washington Luiz,Km 235, BR-13565905 Sao Carlos, SP, Brazil
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2023年 / 74卷 / 04期
关键词
Eigenvalue estimates; Elliptic operator; Riemannian Manifold; Gaussian soliton; TRACE IDENTITIES; INEQUALITIES; LAPLACIAN; HYPERSURFACES; BOUNDS;
D O I
10.1007/s00033-023-02054-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain eigenvalue estimates for a larger class of elliptic differential operators in divergence form on a bounded domain in a complete Riemannian manifold isometrically immersed in Euclidean space. As an application, we give eigenvalue estimates in the Gaussian shrinking soliton, and we find a domain that makes the behavior of these estimates similar to the estimates for the case of the Laplacian. Moreover, we also give an answer to the generalized conjecture of Polya.
引用
收藏
页数:16
相关论文
共 24 条
[1]  
Araujo Filho M. C., 2022, Z ANGEW MATH PHYS
[2]   Inequalities for eigenvalues of fourth-order elliptic operators in divergence form on complete Riemannian manifolds [J].
Araujo Filho, Marcio C. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (02)
[3]   The universal eigenvalue bounds of Payne-Polya-Weinberger, Hile-Protter, and H C Yang [J].
Ashbaugh, MS .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2002, 112 (01) :3-30
[4]  
da Fonseca JCM, 2022, Arxiv, DOI arXiv:2107.09135
[5]  
CHAVEL I., 1984, Eigenvalues in Riemannian Geometry. Pure and applied mathematics
[6]   Extrinsic estimates for eigenvalues of the Laplace operator [J].
Chen, Daguang ;
Cheng, Qing-Ming .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2008, 60 (02) :325-339
[7]   Bounds on eigenvalues of Dirichlet Laplacian [J].
Cheng, Qing-Ming ;
Yang, Hongcang .
MATHEMATISCHE ANNALEN, 2007, 337 (01) :159-175
[8]   Inequalities for eigenvalues of Laplacian on domains and compact complex hypersurfaces in complex projective spaces [J].
Cheng, Qing-Ming ;
Yang, Hongcang .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2006, 58 (02) :545-561
[9]   Estimates for eigenvalues on Riemannian manifolds [J].
Cheng, Qing-Ming ;
Yang, Hongcang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (08) :2270-2281
[10]   Estimates on eigenvalues of Laplacian [J].
Cheng, QM ;
Yang, HC .
MATHEMATISCHE ANNALEN, 2005, 331 (02) :445-460