Artificial Intelligence in Thyroidology: A Narrative Review of the Current Applications, Associated Challenges, and Future Directions

被引:16
|
作者
Toro-Tobon, David [1 ]
Loor-Torres, Ricardo [1 ]
Duran, Mayra [1 ]
Fan, Jungwei W. [2 ]
Ospina, Naykky Singh [3 ]
Wu, Yonghui [4 ]
Brito, Juan P. [1 ,5 ]
机构
[1] Mayo Clin, Dept Med, Div Endocrinol Diabet Metab & Nutr, Rochester, MN 55902 USA
[2] Mayo Clin, Dept Artificial Intelligence & Informat, Rochester, MN USA
[3] Univ Florida, Dept Med, Div Endocrinol, Gainesville, FL USA
[4] Univ Florida, Coll Med, Dept Hlth Outcomes & Biomed Informat, Gainesville, FL USA
[5] Mayo Clin, Dept Med, Div Endocrinol Diabet Nutr & Metab, 200 First St SW, Rochester, MN 55902 USA
基金
美国国家卫生研究院;
关键词
artificial intelligence; machine learning; deep learning; thyroid; CONVOLUTIONAL NEURAL-NETWORK; LYMPH-NODE METASTASIS; DIFFERENTIAL-DIAGNOSIS; HASHIMOTOS-THYROIDITIS; RISK STRATIFICATION; NODULES; CANCER; PREDICTION; MODEL; CARCINOMA;
D O I
10.1089/thy.2023.0132
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: The use of artificial intelligence (AI) in health care has grown exponentially with the promise of facilitating biomedical research and enhancing diagnosis, treatment, monitoring, disease prevention, and health care delivery. We aim to examine the current state, limitations, and future directions of AI in thyroidology.Summary: AI has been explored in thyroidology since the 1990s, and currently, there is an increasing interest in applying AI to improve the care of patients with thyroid nodules (TNODs), thyroid cancer, and functional or autoimmune thyroid disease. These applications aim to automate processes, improve the accuracy and consistency of diagnosis, personalize treatment, decrease the burden for health care professionals, improve access to specialized care in areas lacking expertise, deepen the understanding of subtle pathophysiologic patterns, and accelerate the learning curve of less experienced clinicians. There are promising results for many of these applications. Yet, most are in the validation or early clinical evaluation stages. Only a few are currently adopted for risk stratification of TNODs by ultrasound and determination of the malignant nature of indeterminate TNODs by molecular testing. Challenges of the currently available AI applications include the lack of prospective and multicenter validations and utility studies, small and low diversity of training data sets, differences in data sources, lack of explainability, unclear clinical impact, inadequate stakeholder engagement, and inability to use outside of the research setting, which might limit the value of their future adoption.Conclusions: AI has the potential to improve many aspects of thyroidology; however, addressing the limitations affecting the suitability of AI interventions in thyroidology is a prerequisite to ensure that AI provides added value for patients with thyroid disease.
引用
收藏
页码:903 / 917
页数:15
相关论文
共 50 条
  • [1] The Year in Medical Thyroidology Review: Current Challenges and Future Directions
    Busaidy, Naifa Lamki
    THYROID, 2020, 30 (01) : 13 - 19
  • [2] Artificial Intelligence in Audiology: A Scoping Review of Current Applications and Future Directions
    Frosolini, Andrea
    Franz, Leonardo
    Caragli, Valeria
    Genovese, Elisabetta
    de Filippis, Cosimo
    Marioni, Gino
    SENSORS, 2024, 24 (22)
  • [3] Artificial Intelligence in Endodontics: Current Applications and Future Directions
    Aminoshariae, Anita
    Kulild, Jim
    Nagendrababu, Venkateshbabu
    JOURNAL OF ENDODONTICS, 2021, 47 (09) : 1352 - 1357
  • [4] Artificial Intelligence in Oncology: Current Applications and Future Directions
    Kann, Benjamin H.
    Thompson, Reid
    Thomas, Charles R., Jr.
    Dicker, Adam
    Aneja, Sanjay
    ONCOLOGY-NEW YORK, 2019, 33 (02): : 46 - +
  • [5] Applications of Artificial Intelligence in Myopia: Current and Future Directions
    Zhang, Chenchen
    Zhao, Jing
    Zhu, Zhe
    Li, Yanxia
    Li, Ke
    Wang, Yuanping
    Zheng, Yajuan
    FRONTIERS IN MEDICINE, 2022, 9
  • [6] Artificial Intelligence in Scoliosis: Current Applications and Future Directions
    Zhang, Haozhi
    Huang, Changfa
    Wang, Daoyun
    Li, Kuan
    Han, Xiao
    Chen, Xin
    Li, Zheng
    Kabir, Kouroush
    JOURNAL OF CLINICAL MEDICINE, 2023, 12 (23)
  • [7] Artificial Intelligence in Oncology: Current Landscape, Challenges, and Future Directions
    Lotter, William
    Hassett, Michael J.
    Schultz, Nikolaus
    Kehl, Kenneth L.
    Van Allen, Eliezer M.
    Cerami, Ethan
    CANCER DISCOVERY, 2024, 14 (05) : 711 - 726
  • [8] Leveraging Artificial Intelligence in Project Management: A Systematic Review of Applications, Challenges, and Future Directions
    Adamantiadou, Dorothea S.
    Tsironis, Loukas
    COMPUTERS, 2025, 14 (02)
  • [9] Artificial Intelligence in pathology: current applications, limitations, and future directions
    Sajithkumar, Akhil
    Thomas, Jubin
    Saji, Ajish Meprathumalil
    Ali, Fousiya
    Hasin, E. K. Haneena
    Adampulan, Hannan Abdul Gafoor
    Sarathchand, Swathy
    IRISH JOURNAL OF MEDICAL SCIENCE, 2024, 193 (02) : 1117 - 1121
  • [10] Artificial Intelligence in pathology: current applications, limitations, and future directions
    Akhil Sajithkumar
    Jubin Thomas
    Ajish Meprathumalil Saji
    Fousiya Ali
    Haneena Hasin E.K
    Hannan Abdul Gafoor Adampulan
    Swathy Sarathchand
    Irish Journal of Medical Science (1971 -), 2024, 193 : 1117 - 1121