Deep reinforcement learning based state of charge estimation and management of electric vehicle batteries

被引:2
|
作者
Saba, Irum [1 ]
Tariq, Muhammad [1 ]
Ullah, Mukhtar [1 ]
Poor, H. Vincent [2 ]
机构
[1] Natl Univ Comp & Emerging Sci, Elect Engn, Islamabad, Pakistan
[2] Princeton Univ, Elect & Comp Engn, Princeton, NJ USA
关键词
battery powered vehicles; deep reinforcement learning; electric vehicle charging; smart grid devices; state of charge; LITHIUM-ION BATTERIES;
D O I
10.1049/stg2.12110
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In vehicle-to-grid (V2G) networks, electric vehicle (EV) batteries have significant potential as storage elements to smooth out variations produced by renewable and alternative energy sources and to address peak demand catering to smart grids. State estimation and management are crucial for assessing the performance of EV batteries. Existing approaches to these tasks typically do not include the effect of various parameters like route type, environmental conditions, current, and torque to estimate the state of charge (SoC) of EV batteries. In experiments, it is observed that the overall driving cost is affected by these parameters. A new method based on deep reinforcement learning is proposed to estimate and manage the SoC of nickel-metal hybrid batteries, with an emphasis on the realisation of the parameters that affect a battery's health. The proposed deep deterministic policy gradient-based SoC estimation and management for EV batteries, under the effect of battery parameters, are compared with the existing state-of-the-art models to validate their usefulness in terms of overall battery life, thermal safety, and performance. The proposed method demonstrates an accuracy of up to 98.8% in SoC estimation and overall driving cost with less convergence time as compared to the state-of-the-art models for EV batteries.
引用
收藏
页码:422 / 431
页数:10
相关论文
共 50 条
  • [21] State-of-Health and State-of-Charge Estimation in Electric Vehicles Batteries: A Survey on Machine Learning Approaches
    Haraz, Aya
    Abualsaud, Khalid
    Massoud, Ahmed
    IEEE ACCESS, 2024, 12 : 158110 - 158139
  • [22] Deep reinforcement learning based fast charging and thermal management optimization of an electric vehicle battery pack
    Abbasi, Mohammad Hossein
    Arjmandzadeh, Ziba
    Zhang, Jiangfeng
    Xu, Bin
    Krovi, Venkat
    JOURNAL OF ENERGY STORAGE, 2024, 95
  • [23] Cross-Type Transfer for Deep Reinforcement Learning Based Hybrid Electric Vehicle Energy Management
    Lian, Renzong
    Tan, Huachun
    Peng, Jiankun
    Li, Qin
    Wu, Yuankai
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (08) : 8367 - 8380
  • [24] A comparative study of 13 deep reinforcement learning based energy management methods for a hybrid electric vehicle
    Wang, Hanchen
    Ye, Yiming
    Zhang, Jiangfeng
    Xu, Bin
    ENERGY, 2023, 266
  • [25] A deep learning based approach for predicting the demand of electric vehicle charge
    Mekkaoui Djamel Eddine
    Yanming Shen
    The Journal of Supercomputing, 2022, 78 : 14072 - 14095
  • [26] A deep learning based approach for predicting the demand of electric vehicle charge
    Eddine, Mekkaoui Djamel
    Shen, Yanming
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (12): : 14072 - 14095
  • [27] Deep reinforcement learning control of electric vehicle charging in the of
    Dorokhova, Marina
    Martinson, Yann
    Ballif, Christophe
    Wyrsch, Nicolas
    APPLIED ENERGY, 2021, 301
  • [28] Data-Driven Energy Management of an Electric Vehicle Charging Station Using Deep Reinforcement Learning
    Rani, G. S. Asha
    Priya, P. S. Lal
    Jayan, Jino
    Satheesh, Rahul
    Kolhe, Mohan Lal
    IEEE ACCESS, 2024, 12 : 65956 - 65966
  • [29] Interacting Multiple Model Strategy for Electric Vehicle Batteries State of Charge/Health/ Power Estimation
    Rahimifard, Sara
    Ahmed, Ryan
    Habibi, Saeid
    IEEE ACCESS, 2021, 9 : 109875 - 109888
  • [30] A Dynamic State-of-Charge Estimation Method for Electric Vehicle Lithium-Ion Batteries
    Liu, Xintian
    Deng, Xuhui
    He, Yao
    Zheng, Xinxin
    Zeng, Guojian
    ENERGIES, 2020, 13 (01)