Emerging Landscape of Nanobodies and Their Neutralizing Applications against SARS-CoV-2 Virus

被引:10
作者
Feng, Xuemei [1 ]
Wang, Hu [1 ,2 ]
机构
[1] China Three Gorges Univ, Coll Med & Hlth Sci, Dept Microbiol & Immunol, Yichang 443002, Peoples R China
[2] Johns Hopkins Univ, Inst Cell Engn, Sch Med, Baltimore, MD 21215 USA
关键词
COVID-19; SARS-CoV-2; nanobodies; neutralization; target; detection; SINGLE-DOMAIN ANTIBODY; PHAGE-DISPLAY; STRATEGIES; LIBRARY; PROTEIN;
D O I
10.1021/acsptsci.3c00042
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The new severe acute respiratorysyndrome coronavirus 2 (SARS-CoV-2)that causes the coronavirus disease 2019 (COVID-19) has significantlyaltered people's way of life. Despite widespread knowledgeof vaccination, mask use, and avoidance of close contact, COVID-19is still spreading around the world. Numerous research teams are examiningthe SARS-CoV-2 infection process to discover strategies to identify,prevent, and treat COVID-19 to limit the spread of this chronic coronavirusillness and restore lives to normalcy. Nanobodies have advantagesover polyclonal and monoclonal antibodies (Ab) and Ab fragments, includingreduced size, high stability, simplicity in manufacture, compatibilitywith genetic engineering methods, and lack of solubility and aggregationissues. Recent studies have shown that nanobodies that target theSARS-CoV-2 receptor-binding domain and disrupt ACE2 interactions arehelpful in the prevention and treatment of SARS-CoV-2-infected animalmodels, despite the lack of evidence in human patients. The creationand evaluation of nanobodies, as well as their diagnostic and therapeuticapplications against COVID-19, are discussed in this paper.
引用
收藏
页码:925 / 942
页数:18
相关论文
共 98 条
  • [1] Evaluation of a nanobody phage display library constructed from a Brucella-immunised camel
    Abbady, A. Q.
    Al-Mariri, A.
    Zarkawi, M.
    Al-Assad, A.
    Muyldermans, S.
    [J]. VETERINARY IMMUNOLOGY AND IMMUNOPATHOLOGY, 2011, 142 (1-2) : 49 - 56
  • [2] Anti-CfaE nanobodies provide broad cross-protection against major pathogenic enterotoxigenic Escherichia coli strains, with implications for vaccine design
    Amcheslavsky, Alla
    Wallace, Aaron L.
    Ejemel, Monir
    Li, Qi
    McMahon, Conor T.
    Stoppato, Matteo
    Giuntini, Serena
    Schiller, Zachary A.
    Pondish, Jessica R.
    Toomey, Jacqueline R.
    Schneider, Ryan M.
    Meisinger, Jordan
    Heukers, Raimond
    Kruse, Andrew C.
    Barry, Eileen M.
    Pierce, Brian G.
    Klempner, Mark S.
    Cavacini, Lisa A.
    Wang, Yang
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [3] [Anonymous], 2010, Drug Discov Today Technol, V7, pe95, DOI 10.1016/j.ddtec.2010.03.002
  • [4] [Anonymous], 2006, Drugs and Lactation Database (LactMed)
  • [5] Inhibition of the main protease of SARS-CoV-2 (Mpro) by repurposing/designing drug-like substances and utilizing nature's toolbox of bioactive compounds
    Antonopoulou, Io
    Sapountzaki, Eleftheria
    Rova, Ulrika
    Christakopoulos, Paul
    [J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 1306 - 1344
  • [6] Nanobodies and Nanobody-Based Human Heavy Chain Antibodies As Antitumor Therapeutics
    Bannas, Peter
    Hambach, Julia
    Koch-Nolte, Friedrich
    [J]. FRONTIERS IN IMMUNOLOGY, 2017, 8
  • [7] Model-informed COVID-19 vaccine prioritization strategies by age and serostatus
    Bubar, Kate M.
    Reinholt, Kyle
    Kissler, Stephen M.
    Lipsitch, Marc
    Cobey, Sarah
    Grad, Yonatan H.
    Larremore, Daniel B.
    [J]. SCIENCE, 2021, 371 (6532) : 916 - +
  • [8] Isolating and engineering human antibodies using yeast surface display
    Chao, Ginger
    Lau, Wai L.
    Hackel, Benjamin J.
    Sazinsky, Stephen L.
    Lippow, Shaun M.
    Wittrup, K. Dane
    [J]. NATURE PROTOCOLS, 2006, 1 (02) : 755 - 768
  • [9] Shark nanobodies with potent SARS-CoV-2 neutralizing activity and broad sarbecovirus reactivity
    Chen, Wei-Hung
    Hajduczki, Agnes
    Martinez, Elizabeth J.
    Bai, Hongjun
    Matz, Hanover
    Hill, Thomas M.
    Lewitus, Eric
    Chang, William C.
    Dawit, Layla
    Peterson, Caroline E.
    Rees, Phyllis A.
    Ajayi, Adelola B.
    Golub, Emily S.
    Swafford, Isabella
    Dussupt, Vincent
    David, Sapna
    Mayer, Sandra V.
    Soman, Sandrine
    Kuklis, Caitlin
    Corbitt, Courtney
    King, Jocelyn
    Choe, Misook
    Sankhala, Rajeshwer S.
    Thomas, Paul V.
    Zemil, Michelle
    Wieczorek, Lindsay
    Hart, Tricia
    Duso, Debora
    Kummer, Larry
    Yan, Lianying
    Sterling, Spencer L.
    Laing, Eric D.
    Broder, Christopher C.
    Williams, Jazmean K.
    Davidson, Edgar
    Doranz, Benjamin J.
    Krebs, Shelly J.
    Polonis, Victoria R.
    Paquin-Proulx, Dominic
    Rolland, Morgane
    Reiley, William W.
    Gromowski, Gregory D.
    Modjarrad, Kayvon
    Dooley, Helen
    Joyce, M. Gordon
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [10] Cherf GM, 2015, METHODS MOL BIOL, V1319, P155, DOI 10.1007/978-1-4939-2748-7_8